GOALS AND PERFORIVANCE OF THE IJC 2000 RUJI F CURVES FOR RAINY LAKE AND NAMAKAN RESERVOIR

Gail Faveri, Co-Chair WLC - IRLWWB Larry Kallemeyn, USGS (retired) Ryan Maki, VNP James Bomhof, LWS

OUTLINE

- Rule Curve Comparison
- Aims of 2000 Rule Curves
- Differences in Rule Curves over the years
- Hydrologic performance of 2000 Rule Curve
- Conclusion

Regulation on Namakan Lake

AIMS OF 2000 RULE CURVES

- Provide a water management program for Namakan chain of lakes closer to the magnitude and timing of natural fluctuations with which the affected species and biotic communities evolved.
- Less than natural fluctuations were maintained on Rainy Lake in order to protect from ice damage and provide drought protection.
- A slightly higher risk of water levels above the all gates open level for both lakes was considered acceptable.

MEAN ANNUAL FLUCTUATIONS ON RAINY AND NAMAKAN LAKES OVER THE YEARS OF REGULATION

MEAN WINTER DRAWDOWNS ON RAINY AND NAMAKAN LAKES OVER THE YEARS OF REGULATION

- Rainy \times Namakan

MEAN SUMMER DRAWDOWN ON RAINY AND NAMAKAN

 LAKES OVER THE YEARS OF REGULATION

PEAK WATER LEVEL DAY OF THE YEAR ON RAINY AND NAMAKAN LAKES OVER THE YEARS OF REGULATION

Rainy Local Inflow May-June by year

SIMULATED 2001 INFLOWS ON THE NAMAKAN CHAIN OF LAKES

Simulated Namakan Lake Levels under 1970 and 2000 IJC Rule Curves

SIMULATED 2001 INFLOWS ON RAINY LAKE

Simulated Rainy Lake Levels under 1970 and 2000 IJC Rule Curves

11 March 2015

SIMULATED 2003 INFLOWS ON NAMAKAN CHAIN OF LAKES

Simulated Namakan Lake Levels under 1970 and 2000 IJC Rule Curves

SIMULATED 2003 INFLOWS ON RAINY LAKE

Simulated Rainy Lake Levels under 1970 and 2000 IJC Rule Curves

SIMULATED 2014 INFLOWS ON NAMAKAN CHAIN OF LAKES

Simulated Namakan Lake Levels under 1970 and 2000 IJC Rule Curves

SIMULATED 2014 INFLOWS ON RAINY LAKE

Simulated Rainy Lake Levels under 1970 and 2000 IJC Rule Curves

NAMAKAN CHAIN OF RULE CURVE VIOLATIONS

Annual Summary of Rule Curve Violations

Namakan Chain of Lakes violitions (days)

RAINY LAKE RULE CUR VE VIOL Annual Summary of Rule Curve Violations

Rainy Lake Violations (days)

Annual Summary of Rule Curve Violations									
Rainy Lake Violations (days)									
	Observed_2000curve			modeled_2000curve			modeled_1970curve		
	Above URC	Above AGO	Below LRC	Above URC	Above AGO	Below LRC	Above URC	Above AGO	Below LRC
2000	3	0	0	0	0	0	0	0	0
2001	99	46	0	70	32	0	81	32	0
2002	48	43	0	50	41	0	51	41	29
2003	0	0	189	0	0	172	0	0	224
2004	0	0	0	0	0	0	2	0	0
2005	41	18	0	28	0	0	28	0	0
2006	0	0	125	0	0	121	0	0	129
2007	0	0	113	0	0	164	0	0	212
2008	72	41	0	53	27	0	54	27	0
2009	61	0	0	36	0	0	43	0	0
2010	0	0	58	0	0	64	0	0	74
2011	8	0	98	0	0	89	0	0	108
2012	7	0	59	0	0	56	0	0	89
2013	40	19	0	28	0	0	28	0	0
2014	76	63	0	78	59	0	79	59	0
Totals	455	230	642	343	159	666	366	159	865
Percentages	8.3\%	4.2\%	11.7\%	6.3\%	2.9\%	12.2\%	6.7\%	2.9\%	15.8\%

IN CONCLUSION

- Since 2000 high or low inflows have seen water levels violate the rule curves 12 times on Rainy Lake and 9 times on the Namakan chain of lakes
■ If the 1970 rule curves had been followed the number of violations would have been the during extremely high inflows and worse during extremely low inflows.
\square When inflows are not extreme the rule curves are meeting their objective, particularly during dry conditions.

Violations of IJC Rule Curve for Namakan Lake

Violations of IJC Rule Curve for Rainy Lake

