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Key Findings-Highlights 

 In Lake Erie, a wide variety of both statistical and mathematical models have been developed 

to evaluate the relationships among watershed physiography, land use patterns, and phosphorus 

loading, and to predict the response of the lake to different management actions. Recognizing 

that these models have different conceptual and methodological strengths, one of the priorities 

of the local research agenda must be to maintain this diversity and further consolidate the 

ensemble character of the local forecasting tools.  

 The watershed modelling work has been based on five independent applications of the same 

complex mathematical model, i.e., the Soil and Water Assessment Tool (SWAT) model. Each 

application reflects different assumptions and process characterizations in order to quantify the 

relative importance of the mechanisms that determine phosphorus loading export from the 

Maumee River. Thus, this strategy–in principle- captures some of the uncertainties in our 

understanding of watershed attributes and functioning, and can be classified as a starting model 

ensemble even though the underlying mathematics used to simulate the study site are the same. 

 The five SWAT models showed nearly excellent goodness-of-fit against monthly flow rates and 

phosphorus loading empirical estimates based on a single downstream station. The SWAT 

modelling work in the Maumee River watershed placed little emphasis on evaluating the 

robustness of the hydrological or nutrient loading predictions with a finer (daily) temporal 

resolution, and even less so in capturing the impact of episodic/extreme precipitation events.  

 In an attempt to delineate high-risk areas (or “hot-spots”) with greater propensity for nutrient 

export and downstream delivery rates, the SWAT applications coalesced in their projections 

and identified higher total phosphorus (TP) loading rates from the northwestern and southern 

parts of the Maumee River watershed, as well as a tendency for higher dissolved reactive 

phosphorus (DRP) export rates at the predominantly agricultural central area. However, we 

caution that these projections require further ground-truthing by considering multiple sites 

across the Maumee River watershed to recalibrate the models, and by addressing some of their 

fundamental discrepancies regarding the fertilizer/manure application rates in the croplands or 

the spatial drainage of soils.  

 Analysis of scenarios with commonly applied (fertilizer reduction, tillage replacement) and 

less frequent (land-use conversions, wetland/buffer restoration) best management practices 

(BMPs) did not provide strong evidence regarding the likelihood to achieve the March-July 

phosphorus loading targets of 186 metric tonnes of DRP and 860 metric tonnes of TP, or 40% 

reduction from the 2008 loads.  

 Overall, our technical analysis suggests that the current modelling work in the Maumee River 

watershed is not ready yet (i) to provide robust predictions regarding the long-term 

achievability of the phosphorus loading targets, and (ii) to evaluate the impact of individual 

episodic events that can carry significant nutrient loads and presumably modulate the water 

quality conditions downstream. Critical next steps would be to revisit several influential 

assumptions (tile drainage, fertilizer/manure application rates, land use/land cover data) and 

recalibrate the existing SWAT applications to capture both baseline and event-flow conditions 

and daily nutrient concentration (not loading) variability in multiple locations rather than a 

single downstream site. Another challenging aspect is the proper consideration of legacy P 

(e.g., initialization that accommodates the spatial soil P variability, sufficient model spin-up 

period, parameter specification that reproduces the gradual P accumulation in the soils) and its 
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ability to reproduce the critical hydrological and transformation mechanisms modulating the 

DRP loading in the Lake Erie basin. As far as other mechanistic models are concerned, MIKE 

SHE and Storm Water Management Model (SWMM) could also be considered due to their 

ability to simulate channel routing and urban BPM scenarios.    

 The multi-model ensemble for the Lake Erie itself has been based on a wide range of data-

driven and process-based models that span the entire complexity spectrum. Specifically, the 

models included in the multi-model ensemble strategy were two empirical models, 

UM/GLERL Western Basin HAB model and  NOAA Western Basin HAB model, and six 

process-based models: Total Phosphorus Mass Balance Model (TPMB), 1-Dimensional 

Central Basin Hypoxia Model (1D-CBH), Ecological model of Lake Erie (EcoLE), Western 

Basin Lake Erie Ecosystem Model (WLEEM), the Estuary and Lake Computer Model-

Computational Aquatic Ecosystem Dynamics Model (ELCOM-CAEDYM); and the Eastern 

Basin Cladophora Model (ECB).  

 Consistent with the general trend in the international modelling literature, the performance of 

the aquatic ecological models in Lake Erie declined from physical, chemical to biological 

variables. Temperature and dissolved oxygen variability were successfully reproduced, but less 

so the ambient nutrient levels. Model performance against cyanobacteria was inferior relative 

to chlorophyll a concentrations and zooplankton abundance.  

 Our skill assessment analysis is based on a finer resolution in time and space, as opposed to 

the aggregated spatiotemporal (basin- or lake-wide, seasonal/annual time) scales adopted from 

the local modelling community, and therefore our goodness-of-fit statistics are less favorable. 

In principle, the selected coarse scales for evaluating model performance are defensible, as 

they are consistent with those used for the established nutrient loading targets and water quality 

indicators in Lake Erie. However, there are compelling technical and management reasons why 

this practice is problematic and it is recommended to be revisited during the next iteration of 

the modelling framework.  

 General evidence from the international literature suggests that the prediction of the annual TP 

load reduction needed (1,130-3,010 MT) to decrease in half the summer average chlorophyll 

a concentration in the western basin is undoubtedly in the right direction. Likewise, the 

coupling of empirical and process-based models offers a healthy foundation to evaluate 

competing hypotheses and support forecasts regarding the achievability of the target related to 

the maximum 30-day average cyanobacteria biomass in the same basin. To further reduce the 

predictive uncertainty, it is important to improve our understanding (and subsequently the 

representation with the existing process-based models) of several facets of phytoplankton 

ecology, such as the postulated degree of reliance of phytoplankton growth upon internal 

nutrient sources (e.g., microbially mediated regeneration, dreissenid or zooplankton excreted 

material in nearshore and offshore waters, respectively), the internal P loading from the 

sediments, the role of nitrogen, and the trophic interactions with zooplankton. 

 We are particularly skeptical about the optimistic predictions of the extent and duration of 

hypoxia, given our limited knowledge of the sediment diagenesis processes in the central basin 

and the lack of data related to the vertical profiles of organic matter and phosphorus 

fractionation or sedimentation/burial rates. There is a rich research agenda that should be put 

in place with the next iteration of the adaptive management cycle, before we are in a position 

to predict the degree and timing of the sediment response or the likelihood of unexpected 

feedback loops that could delay the realization of the anticipated outcomes. The same is true 

about our ability to forecast the control of Cladophora growth in the eastern basin by P load 



Page | ix  

 

reductions. The management efforts will greatly benefit from a high-resolution monitoring of 

the nearshore zone to provide critical information regarding the causal linkages between the 

abiotic conditions (e.g., SRP, light, temperature) in the surrounding environment and the 

internal P content and sloughing rates in Cladophora mats.  

 Viewing ecosystems as providers of economically valuable benefits to humans, the concept of 

ecosystem services effectively links their structural and functional integrity with human 

welfare. Given the presence of a wide array of feedback loops, ecological unknowns, and other 

external stressors (i.e., internal loading, dreissenid mussels, different trends between TP and 

DRP loading, changing climate and increased frequency of extreme events), we strongly 

recommend the development of a rigorous framework that quantifies the socioeconomic 

benefits from a well-functioning ecosystem. This may be proven to be a critically important 

strategy to gain leeway and keep the investments to the environment going, especially if the 

water quality improvements in Lake Erie are not realized in a timely manner.   

 Consistent with our criticism regarding the skill assessment of the existing modelling work 

against aggregated spatiotemporal resolution, we also question the adequacy of the coarse 

scales selected to establish nutrient loading targets and ecosystem response indicators in Lake 

Erie. This strategy is neither reflective of the range of spatiotemporal dynamics typically 

experienced in the system nor does it allow to evaluate our progress with ecosystem services 

at the degree of granularity required to assess the public sentiment. It would seem paradoxical 

to expect a single-valued standard, based on monitoring and modelling of offshore waters, to 

capture the water quality conditions in nearshore areas of high public exposure (e.g., beaches). 

The degree of public satisfaction is primarily determined by the prevailing conditions at a 

particular recreational site and given date, and less so by the average water quality over the 

entire basin (or lake) and growing season.  

 In the context of adaptive management implementation, we believe that two critical next steps 

involve the determination of appropriate metrics and scales of expression along with the design 

of a monitoring program that will allow to effectively track the progress of the system in both 

time and space.  

 From a management standpoint, our technical analysis concludes that the existing modelling 

work in Lake Erie has advanced significantly our understanding of the major causal 

linkages/ecosystem processes underlying the local water quality problems. The results of the 

forecasting exercises presented in the recent literature are pointing to the correct direction with 

respect to the on-going management efforts. However, we emphatically caution that there are 

several highly uncertain predictions and management recommendations (e.g., achievability of 

loading targets, alleviation of hypoxia, and likelihood to control of Cladophora growth) that 

should be critically reviewed through the iterative monitoring-modelling-assessment cycles of 

adaptive management.  
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Executive Summary 

Adaptive implementation (or “learning while doing”) is often considered the only defensible 

environmental management strategy, as it promotes an iterative implementation process to deal 

with the uncertainty of ecological forecasts and to mitigate the impact of inefficient management 

plans. Environmental models are one of the pillars of the adaptive management process, whereby 

the initial forecasts of management actions are augmented with post-implementation monitoring 

and the resulting integration of monitoring and modelling provides the basis for revised 

management actions. In Lake Erie, a unique combination of data-driven and process-based models 

have been developed to evaluate the relationships among watershed physiography, land use 

patterns, and phosphorus loading, to elucidate ecological interactions, to understand the 

mechanisms underlying specific facets of the ecosystem functioning (cyanobacteria dominance, 

re-engineering of the nearshore zone induced by dreissenid mussels, Cladophora proliferation), 

and to predict the response of the lake to external nutrient loading reductions. Consistent with the 

scientific process of progressive learning, the present study offers a technical analysis to assist 

with the design of the next iteration of the modelling framework by identifying strengths and 

weaknesses of the existing work and pinpointing essential structural augmentations and 

research/monitoring priorities in order to integrate watershed and aquatic ecosystem processes. 

Model ensembles and adaptive management implementation 

Recognizing that there is no true model of an ecological system, but rather several adequate 

descriptions of different conceptual basis and structure, the adoption of a multi-model framework 

is specifically designed to address the uncertainty inherent in the model selection process. 

Nonetheless, the presence of multiple models on its own cannot ensure that the decision-making 

process is reliably supported, as there are several methodological steps required in order (i) to 

identify the conceptual or structural differences of the existing models, and thus determine the 

actual diversity (or rule out the likelihood of “pseudo-replication”) collectively characterizing the 

multi-model ensemble; (ii) to determine the most suitable calibration/validation domain and 

resolution for evaluating model performance in time and space; and (iii) to establish an optimal 

weighting scheme in order to assign weights to individual models, when integrating over their 

corresponding predictions, and subsequently determine the most likely outcome along with the 

associated uncertainty bounds.  

In terms of model diversity, the local watershed modelling work has been based on five 

applications of the same complex mathematical model, i.e., the Soil and Water Assessment Tool 

(SWAT) model, from groups affiliated with Heidelberg University (HU), LimnoTech (LT), Ohio 

State University (OSU), Texas A&M University (TAMU), and the University of Michigan (UM). 

Each application represents an independent attempt to quantify the relative importance of the 

processes that determine phosphorus loading export from the Maumee River. In doing so, the five 

SWAT models collectively captured some of the uncertainty in our understanding of watershed 

attributes and functioning, and thus this strategy (hereafter referred to as SWAT-ensemble) can be 

classified as a model ensemble even though the underlying mathematics used to simulate the study 

site were the same. The SWAT-ensemble offered a platform to examine different land-use 

management scenarios after consultation with agricultural and conservation stakeholders. Except 

from the SWAT applications, an empirical (SPAtially Referenced Regression On Watershed 

attributes or SPARROW) model was also used in a post-hoc delineation exercise to validate the 

predicted locations with higher propensity of phosphorus export from the Maumee River 
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watershed, but not as a forecasting device to examine the efficiency of different land use 

management scenarios.  

The multi-model ensemble for the Lake Erie itself has been based on a wide range of data-driven 

and process-based models to examine the achievability of different environmental targets under 

various external nutrient loading conditions. Specifically, the models included in the multi-model 

ensemble strategy were two empirical models, UM/GLERL Western Basin HAB model and  NOAA 

Western Basin HAB model, and six process-based models: Total Phosphorus Mass Balance Model 

(TPMB), 1-Dimensional Central Basin Hypoxia Model (1D-CBH), Ecological model of Lake Erie 

(EcoLE), Western Basin Lake Erie Ecosystem Model (WLEEM), the Estuary and Lake Computer 

Model-Computational Aquatic Ecosystem Dynamics Model (ELCOM-CAEDYM); and the Eastern 

Basin Cladophora Model (ECB). Regarding the diversity of the process-based modelling work for 

Lake Erie, the models developed come from the entire complexity spectrum.  

SWAT-based ensemble strategy for the Maumee River watershed  

Based on pre-specified performance standards for the simulated flow and phosphorus loading rates, 

the five SWAT models showed nearly excellent goodness-of-fit against measured monthly flow 

rates and phosphorus loading empirical estimates. However, none of the existing models reported 

goodness-of-fit against measured phosphorus concentrations. There is evidence either from the 

reported fit statistics on a monthly scale (i.e., underestimated flow rates combined with 

overestimated phosphorus loading and vice-versa) or a few graphs presented in the literature that 

the existing SWAT models (e.g., HU and TAMU) are characterized by significant bias of the 

corresponding concentrations, which in turn casts doubt on the process characterization of the 

simulated phosphorus cycles. 

The SWAT modelling work in the Maumee River watershed placed little emphasis on evaluating 

the robustness of the hydrological or nutrient loading predictions with a finer temporal resolution. 

In an independent error assessment of the daily outputs from the UM model, we showed that the 

UM SWAT consistently underestimated the flow rates in 20 out of 22 episodic precipitation events 

(> 1000 m3 s-1), reinforcing the point that the previously reported excellent goodness-of-fit with a 

coarser (seasonal or monthly) resolution may simply stem from multiple daily errors/biases that 

cancel each other out when seasonally or monthly averaged, and thus does not necessarily 

guarantee acceptable performance against finer time scales.  

Following the development of a spatially distributed model, the identification of high-risk areas 

(or “hot-spots”) with greater propensity for nutrient export and downstream delivery rates is an 

important exercise. In the Maumee River watershed, given that the calibration of all five SWAT 

applications was based on a single downstream station, two factors could be responsible for the 

(dis)agreement among the corresponding delineations: (i) the discrepancies among the 

assumptions made or input data used during the spatial configuration (e.g., tile drainage, 

fertilizer/manure application rates, land use/land cover or LULC data) of the individual models; 

and (ii) the differences in the characterization of processes pertaining to the simulated water and 

nutrient cycles. Bearing these two major sources of uncertainty in mind, there was a general 

agreement among the models in identifying higher TP loading rates from the northwestern and 

southern parts of the Maumee River watershed, whereas a tendency for higher dissolved reactive 

phosphorus (DRP) export rates was mainly projected on the predominantly agricultural central 

area. 
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In the Maumee River watershed, several scenarios of best management practices (BMPs) were 

designed after considering issues related to their practical implementation and policy feasibility, 

i.e., commonly applied (fertilizer reduction, tillage replacement) versus less frequent management 

practices (land-use conversions, wetland/buffer restoration); the ability of SWAT to examine 

certain agricultural activities; and extensive consultation with agricultural and conservation 

stakeholders. Overall, there was no strong evidence regarding the likelihood to achieve the March-

July phosphorus loading targets of 186 metric tonnes of DRP and 860 metric tonnes of TP, or 40% 

reduction from the 2008 loads, across the different BMP scenarios examined. The attainability of 

the TP loading threshold seems to be more possible relative to the one for DRP loading. It is also 

worth noting that the forecasts associated with commonly applied BMP scenarios were somewhat 

more conservative, in comparison with scenarios that are less frequently applied. The degree of 

divergence of the individual model forecasts for a given BMP scenario examined (or the 

forecasting spread) offered insights that can meaningfully inform the environmental policy 

analysis process. Specifically, the forecasting spread increases significantly with the degree of 

deviation of BMP scenarios from the present conditions. The existing SWAT applications suggest 

that for every 50 metric tonnes of reduction achieved the standardized forecasting spread, or the 

deviation of the five models divided by their corresponding averaged prediction for a given 

scenario, increases by 1.5% and 13% for TP and DRP, respectively. To put it another way, the 

mean forecasted range with the existing loading targets of 860 tonnes for TP and 186 tonnes for 

DRP is 635-1085 tonnes and 120-245 tonnes, respectively.  

Multi-model ensemble strategy for Lake Erie  

In reviewing the pertinent literature, a first notable finding is that the modelling work for Lake 

Erie has closely followed the recommended methodological protocol when developing models 

intended to assist environmental management. Following the evolution of each model over time, 

we can find detailed sensitivity analysis exercises and goodness-of-fit statistics against a wide 

range of multi-year conditions and spatial domains. On the other hand, because of the complexity 

of the existing mechanistic models in Lake Erie, the rigorous quantification of their uncertainty 

can be particularly challenging (if at all possible) and thus has not received substantial attention. 

Consistent with the general trend in the international modelling literature, the performance of the 

aquatic ecological models in Lake Erie declined from physical, chemical to biological variables. 

Specifically, the temperature and DO variability were successfully reproduced, and less so the 

ambient TP, DP, NO2+NO3, and NH4 levels. Model performance against cyanobacteria was 

distinctly worse relative to chlorophyll a concentrations and zooplankton abundance.  

Regarding our skill assessment analysis, it is important to note that our study is based on a point 

comparison in time and space, as opposed to the aggregated spatiotemporal (basin- or lake-wide, 

seasonal/annual time) scales adopted from the local modelling community, and therefore our 

goodness-of-fit statistics are less favorable compared to those reported against coarser spatio-

temporal scales. In principle, the selected coarse scales for evaluating model performance in time 

and space are defensible, as they are consistent with those used for the established nutrient loading 

targets and water quality indicators in Lake Erie. Nonetheless, given that the majority of these 

models are based on daily (or sub-daily) simulations within one- to three-dimensional spatial 

domains, it would seem that the bar of what constitutes an acceptable model performance has been 

lowered significantly. There are compelling reasons why this practice is problematic and should 

be revisited during the next iteration of the modelling framework. From a technical standpoint, 

evaluating model goodness-of-fit with a coarser resolution not only entails the risk to obfuscate 

multiple daily or location-specific errors/biases that cancel each other out when seasonally or 
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spatially averaged, but may also detract the attention from the much-needed critical evaluation of 

the process characterizations derived after the calibration of (prone-to-overfitting) complex models. 

In particular, many of the assumptions made or parameter values assigned could be adequate to 

describe spatially or temporally aggregated patterns, but could also be the culprits for the 

misrepresentation of important aspects of the intra- or inter-annual and spatial variability (e.g., 

magnitude of the spring freshet, timing of algal blooms, and response of the nearshore zone to 

extreme precipitation events). Our independent model-fit reassessment exercise on a daily scale 

reinforced the importance of the latter issue by showing the distinctly inferior performance of both 

watershed and aquatic ecosystem models, as well as their inability to capture critical short-term or 

event-based facets of the simulated terrestrial and aquatic biogeochemical cycles. 

Load-Response Curves and Sources of Uncertainty: After forcing the different lake models with a 

series of nutrient loading reduction scenarios, the likelihood to achieve four ecosystem response 

indicators (ERIs) was examined by the construction of load-response curves. Our assessment of 

the lessons learned and important issues identified from this forecasting exercise are as follows:  

 Basin-specific overall phytoplankton biomass, represented by summer average chlorophyll a 

concentration: The diversity of the existing modelling work in Lake Erie as well as the general 

evidence from the international literature in terms of our ability to predict total phytoplankton 

biomass suggest that this forecasting exercise has a lot of potential to meaningfully assist the 

local management efforts. The multi-model ensemble predicted that the annual TP loads into 

the western basin needed to bring about a 50% decrease in the maximum Chl a concentrations 

range between 1,130 and 3,010 MT.  

 Western basin cyanobacteria biomass, represented by the maximum 30-day average 

cyanobacteria biomass: Considering the challenges with the modelling of individual 

phytoplankton functional groups, the forecasting exercise regarding the likelihood of 

cyanobacteria blooms under different loading regimes is as robust as it can be realistically 

expected. The coupling of empirical and process-based models for this ERI offers a healthy 

foundation to evaluate competing hypotheses and advance our knowledge on the suite of 

factors that may trigger cyanobacteria dominance in Lake Erie. We caution though that the 

reported range of cumulative Maumee March–July annual loads of 1679–2170 MT for 

achieving the cyanobacteria harmful algal bloom (cHAB) target is likely narrow and does not 

reflect the actual uncertainty with this ERI.  

 Central basin hypoxia, represented by number of hypoxic days; average extent of hypoxic area 

during summer; and average hypolimnion DO concentration during August and September: 

The load-response curves were suggestive of a fairly wide uncertainty range, 2,600–5,100 MT, 

within which the targeted hypolimnetic DO threshold of 4.0 mg L-1 can be realized. Likewise, 

a load reduction anywhere between 3,415-5,955 MT was projected to reduce the average 

hypoxic extent to 2000 km2 and the number of hypoxic days between 9 to 42 days. Generally, 

our study casts doubt on the ability of the existing models to support reliable predictions 

regarding the likelihood to alleviate the hypoxia in the central basin of Lake Erie, given that 

our mechanistic understanding of sediment diagenesis, i.e., the characterization of organic 

matter mineralization and redox-controlled processes within different sediment layers, is still 

inadequate. There is a rich research agenda that should be in place with the next iteration of 

the adaptive management cycle, before we are in a position to predict the degree and timing of 

the sediment response or the likelihood of unexpected feedback loops that could delay the 

realization of the anticipated outcomes.  
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 Eastern basin Cladophora represented by dry weight biomass and stored P content: The 

achievability of a threshold value of 30 g dry weight biomass/m2 was assessed with load–

response curves generated in an area centered on the Grand River and covering 40 km of the 

northern shoreline area out to the 15 m depth contour. The predictions drawn suggested that P 

load reductions will bring about minor decline in the Cladophora biomass in the eastern basin. 

There are three compelling reasons why the modelling of Cladophora in the eastern basin still 

carries little predictive value. First, the domain within which Cladophora growth could be 

regulated by soluble reactive phosphorus (SRP) concentrations is extremely low (0.2–1.0 μg P 

L-1), while year-to-year variability even on the order of 1 μg P L-1 could result in variations of 

depth-integrated biomass by a factor of 3.5. Second, except from the supply by dreissenid 

excreta, the SRP nearshore concentrations are also modulated by the inflows from the Grand 

River as well as the nearshore-offshore exchanges. Frequent upwelling events driven by 

favorable winds of 5-10 days period can easily increase P supply above saturation levels. Third, 

although plausible explanations on the factors that accelerate the sloughing rates and their 

development within the Cladophora mats do exist, the mathematical representation of the 

associated processes is far from adequate. Rather than increasing the complexity of (already) 

over-parameterized models, the management efforts will be better supported by the 

development of two empirical models offering causal linkages between the abiotic conditions 

(e.g., SRP, light, temperature) in the surrounding environment and the internal P content and 

sloughing rates in Cladophora mats.  

Next steps towards the development of an integrated modelling framework 

The recommended next steps and outstanding questions/challenges that need to be considered with 

the design of the next iteration of the modelling framework in Lake Erie are as follows: 

 Persistence of DRP loading from the Maumee River watershed: Empirical and modelling 

evidence suggests an increasing DRP loading trend after the mid-1990s, which has been 

attributed to the increased frequency of storm events, excessive fertilizer application rates and 

timing, and management practices that appear to increase phosphorus accumulation at the soil 

surface. Given this emerging evidence, one challenging aspect for the evaluation of scenarios 

with the SWAT-ensemble is the proper consideration of legacy P (e.g., initialization that 

accommodates the spatial soil P variability, sufficient model spin-up period, parameter 

specification that reproduces the gradual P accumulation in the soils) and its ability to 

reproduce the critical hydrological and transformation mechanisms modulating the DRP 

loading in the Lake Erie basin. 

 Characterization of watershed processes associated with the nitrogen cycle: Contrary to our 

understanding of TP fate and transport, a greater proportion of total nitrogen (TN) is found in 

the dissolved phase due to relatively high solubility of nitrogen species, such as nitrite and 

nitrate, and can be transported by both overland and subsurface flow paths (greater than 

phosphate due to immobilization of phosphate by clay and other soil chemical constituents). It 

is thus important to improve our understanding of the watershed processes associated with the 

nitrogen cycle, given that it could be one of the regulatory factors of the downstream water 

quality conditions; especially the algal community composition. 

 Impact of extreme precipitation events: The characterization of surface runoff and subsurface 

processes during flow events is largely unknown in the area, and therefore the design of high 

frequency, event-based, water quality sampling coupled with water stable isotope analysis (18O 

and 2H) should be one of the priorities in our efforts to rectify the misrepresentation of extreme 

flow conditions.  
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 BMP uncertainty: Although BMP implementation is typically based on the stipulation that both 

short- and long-term effectiveness are guaranteed, emerging evidence is suggestive of 

moderate water quality improvements in many watersheds and broad variability in their 

performances, often much lower compared to the specs of the original design from BMP 

experimental studies. As a first step to accommodate BMP uncertainty, we thus propose a 

moderate enhancement with a stochastic time-invariant representation of BMP effectiveness in 

watershed models, followed by the introduction of time-variant probability distributions for 

BMP life-cycle performance. The proposed stochastic augmentation would allow studying the 

uncertainty of BMP scenarios with Monte Carlo simulations, thereby providing a pragmatic 

tool to assess the likelihood of the achievability of the proposed nutrient loading reduction 

goals.  

 Need for other process-based models in the Maumee River watershed: SWAT could be 

complemented by the modules of other watershed models, especially for surface runoff, 

groundwater and sediment erosion processes. For the hydrological and sediment processes, 

MIKE SHE seems to be more up-to-date with respect to the mechanisms considered, assuming 

that local empirical knowledge is available to constrain the additional parameters. Regarding 

the simulated P cycle, SWAT has the advantage to explicitly simulate the daily plant growth, 

but it could be further improved by adopting a dynamic P equilibrium concentration. MIKE 

SHE and Storm Water Management Model (SWMM) are superior to SWAT in channel routing 

because of their capability to simulate pipe flows. SWAT is more suitable for agricultural BMPs 

(e.g., terracing, contouring, strip cropping, tillage operations, crop rotations, and fertilizer 

application), while the urban BMP modules in SWMM (e.g., rain gardens, green roofs, 

infiltration trenches, permeable pavement, and vegetative swales) offer a more reliable 

alternative model. More importantly, we believe that greater insights will be gained by 

revisiting several influential assumptions (tile drainage, fertilizer/manure application rates, 

LULC data) and recalibrating the existing SWAT applications to capture both baseline and 

event-flow conditions and daily nutrient concentration (not loading) variability in multiple 

locations rather than a single downstream site. 

 Empirical modelling in the Lake Erie basin: Together with the process-based modelling work 

in the Maumee River watershed, it is also critical to have simpler empirical models in place 

that not only provide predictive statements confined within the bounds of data-based parameter 

estimation, but also to constrain processes/fluxes parameterized by mechanistic models or even 

to validate the corresponding forecasts drawn. An appealing alternative could be the 

development of a Great Lakes SPARROW that narrows the focus of the original model, while 

maintaining its “global” character. Importantly, the rigid common parameter estimates over 

the entire spatial model domain can be relaxed by the use of a hierarchical structure that allows 

to estimate watershed-specific parameters, and thus accommodate the spatial variability within 

the Great Lakes basin. In addition, rather than the strict data censoring currently implemented, 

the SPARROW practice should become more inclusive. In particular, the calibration datasets 

could be coupled with measurement-error submodels to characterize our degree of confidence 

on their quality or to accommodate the serial correlation among nested subwatersheds. This is 

an important project that will consolidate the presence of an empirical modelling tool to guide 

the delineation of nutrient hot-spots alongside the process-based modelling work. 

 Improving the credibility of the load-response curves: Our study highlighted several important 

structural augmentations of the existing modelling tools that could increase both their heuristic 

and predictive values as long as commensurate empirical knowledge to constrain the 
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mathematics becomes available from Lake Erie. If we strive to establish predictive linkages 

between the magnitude and timing of the response of the sediments and different loading 

regimes, the study of the sediment diagenesis processes is essential in understanding the control 

of redox chemistry on the vertical profiles of biodegradable organic matter and P binding forms. 

Empirical information is also needed to constrain the submodels/differential equations related 

to dreissenids, Cladophora, and zooplankton. While decent progress has been made in 

representing the role of dreissenid mussels in the system, little work has been done to properly 

adapt the existing Cladophora submodel to the nearshore zone and even less so to depict the 

phytoplankton-zooplankton interactions in Lake Erie. Likewise, with the shift in focus to the 

average conditions of the offshore waters, the nearshore zone has received less attention from 

the existing modelling work in Lake Erie.  

 Understanding the factors triggering HAB formation: One important lesson learned from both 

mechanistic and data-driven models was that both the dissolved reactive and particulate 

fractions of TP load must be taken into account when setting HAB-related load targets. Existing 

empirical estimates show significant variability of the bioavailable fraction of particulate 

phosphorus (20-45%) in the Maumee River, and several mechanisms (e.g., microbial 

mineralization, anoxic release from the sediments) could potentially determine the 

bioavailability of the inflowing material from the time of entry in early spring until the mid-

summer initiation of Microcystis blooms. Another interesting finding from the modelling work 

in Lake Erie is that its susceptibility to HAB occurrence could be increasing, and this trend 

could be attributed to changing meteorological conditions, such as warmer temperatures and 

calmer summer conditions, presence of an increasing reservoir of Microcystis seed colonies, 

and the selective filtering of dreissenids on competing phytoplankton species. Another factor 

that has received little attention is the importance of the inter-specific competition for various 

nitrogen forms; in particular, urea and ammonium are considered energetically favorable forms 

for protein synthesis and therefore predominant stimulants of Microcystis blooms. There is 

emerging evidence from other locations around the Great Lakes of a strong relationship 

between nitrogen concentration and toxin-producing Microcystis strains or microcystin 

production, but limited empirical or modelling work has been done to evaluate this hypothesis 

in Lake Erie. 

 Valuation of ecosystem services in Lake Erie: Given that environmental policy affects both the 

ecosystem state and the provision of services that human societies benefit from, we argue that 

the efficacy of the local restoration efforts will be significantly enhanced by the development 

of a rigorous framework that quantifies the economic benefits from a well-functioning 

ecosystem. Economic values of ecosystem services can help policy-makers determine the 

optimal degree of investment and action needed at each time step by defining the monetary 

trade-offs from different courses of management action. At the beginning of each restoration 

effort, the total returns and benefits are typically commensurate with the costs and investments, 

but this pattern may not hold true after a certain point, where we get diminishing (and 

ultimately negative) returns and marginal benefits. Viewed it from this perspective, it is 

important to delve into (somewhat underappreciated) ideas, such as the total economic value 

(TEV) of an ecosystem, the degree of our knowledge of the monetary value of ecosystem 

services in Lake Erie, and the mismatch between the scales where environmental goals are 

being set and the spatiotemporal domain that predominantly influences the perception of the 

public. 
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 Environmental criteria/standards: Consistent with our criticism regarding the skill assessment 

of the existing modelling work against aggregated spatiotemporal (seasonal/annual, basin- or 

lake-wide) resolution, we also question the adequacy of the coarse scales selected to establish 

nutrient loading targets and water quality indicators in Lake Erie. This strategy is neither 

reflective of the range of spatiotemporal dynamics typically experienced in the system nor does 

it allow to evaluate our progress with ecosystem services at the degree of granularity required 

to assess the public sentiment. It would seem paradoxical to expect a single-valued standard, 

based on monitoring and modelling of offshore waters, to capture the water quality conditions 

in nearshore areas of high public exposure (e.g., beaches). The degree of public satisfaction is 

primarily determined by the prevailing conditions at a particular recreational site and given 

date, and less so by the average water quality over the entire basin (or lake) and growing season. 

In our view, the problems with the outdated practice to basing the water quality assessment on 

the offshore zone with a coarse time scale are twofold: (i) we cannot effectively track the 

progress with the response of the system, as it is not clear to what extent an incremental 

improvement in the open waters is translated into distinct changes in the nearshore; and (ii) the 

environment targets and decisions are implicitly disconnected with our aspiration to protect 

ecosystem services and gauge public satisfaction at the appropriate resolution.  

 Future monitoring: In the context of adaptive management implementation, we believe that 

the critical next steps involve the determination of appropriate metrics and scales of expression 

along with the design of a monitoring program that will allow to effectively track the progress 

of the system in both time and space. Depending on the ERI considered, there are different 

areas for future augmentation in order to more comprehensively monitor the response of Lake 

Erie. In particular, the assessment of the trophic status may be more appropriate to revolve 

around extreme (or maximum allowable) phytoplankton or TP levels and must explicitly 

accommodate all the sources of uncertainty by permitting a realistic frequency of violations. 

Rather than any type of data averaging, we advocate the assessment of compliance against the 

proposed probabilistic criteria using daily snapshots collected regularly from different sites 

during the growing season. The development of the “cyanobacteria index” is certainly useful, 

but given the technical limitations of the satellite images, we also need other cHAB proxy 

variables that will be collected regularly from the system, including toxins (e.g., Microcystin-

LR). The established thresholds for drinking water (1.5 μg L-1) and recreational purposes (20 

μg L-1) offer easily defensible targets to track the frequency of compliance of Lake Erie in time 

and space. Regarding the hypoxia and Cladophora ERIs, given our limited mechanistic and 

quantitative understanding of the primary driving factors, we also propose the development of 

systematic records for variables that represent direct causal factors of the actual problem, such 

as phosphorus content in the Cladophora tissues, characterization of the organic matter and 

phosphorus fractionation in the sediments, are the most prudent strategy to move forward. 

 Role of complex mathematical models in Lake Erie: From a management standpoint, it is 

important to note that the complex mechanistic models are an absolutely worthwhile activity 

and will continue to assist the on-going management efforts in a meaningfully way. Even if 

the structure of complex mathematical models reduces their predictive power or even the 

ability to conduct rigorous uncertainty analysis, they still offer excellent platforms to gain 

insights into the direct, indirect, and synergistic effects of the ecological mechanisms forming 

the foundation of system behavior. For example, the virtual 3D environment created by 

ELCOM-CAEDYM and/or WLEEM can offer a convenient platform to reconcile the coarse-

scale (practically offshore) predictions, required to assess the ERI achievability, with the 

granularity that necessitates to elucidate nearshore processes and associated ecosystem 
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services. Being an integral part of the iterative monitoring-modelling-assessment cycles, the 

foundation of the mechanistic modelling work in Lake Erie can be optimized through reduction 

of the uncertainty of critical ecological processes or refinement of their structure (e.g., 

mathematical reformulation of highly sensitive terms, exclusion of irrelevant mechanisms and 

inclusion of missing ones), thereby enhancing their ability to support ecological forecasts. It is 

thus critical that one of the priorities of the research agenda should be to maintain the ensemble 

character of the modelling work in Lake Erie. The wide variety of models that have been 

developed to understand the major causal linkages/ecosystem processes underlying the local 

water quality problems are a unique feature that should be embraced and further augmented. 
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“….Models serve as expressions of ecological understanding, as engines for deductive inference, 

and as articulations of resource response to management and environmental change. They help 

bring together scientists, managers, and other stakeholders in a joint assessment of what is 

known about the system being managed, and facilitate an interdisciplinary approach to 

understanding through monitoring and assessment….” 

William et al. (2009) Adaptive Management: The U.S. Department of the Interior Technical 

Guide. 

1 Introduction 

In the context of natural resource management, the central goals of policy analysis aim to 

identify the important drivers of environmental degradation, to elucidate the sources of controversy, 

and to put the necessary tools in place in order to anticipate the unexpected. Environmental 

problems have a way of resurfacing themselves and are rarely (if ever) solved completely. 

However, even if certain facets of a management problem change over time, the core issues remain 

the same, and thus it is critical to establish a framework that ensures both continuity in the decision-

making process but also iterative adjustments to accommodate the extrinsic non-stationarity or 

intrinsic stochasticity (Allen et al., 2011; Williams et al., 2011). Viewed from this context, adaptive 

implementation is a pragmatic strategy that not only acts as a hedge against the ubiquitous 

uncertainty surrounding the study of environmental systems, but also paves the way for the dual 

pursuit of management and learning (Walters and Holling, 1990). Adaptive management offers 

flexibility in making decisions in the face of uncertainty, as scientific learning progressively 

advances from research, monitoring, and impartial evaluation of the outcomes of past and on-going 

management actions (Fig. 1). Even though its core principles are often misconstrued as a “trial-

and-error” process, adaptive management promotes a learning-while-doing mindset whereby 

policies or operations can be updated accordingly (Williams et al., 2009; Lyons et al., 2010; 

Conroy et al., 2011). Thus, adaptive management should not be perceived as an end in itself, but 

rather as a means to galvanize our efforts to advance scientific understanding of the attributes and 

functioning of an “impaired” environmental system, as well as to crystallize the decision-making 

process and facilitate the integration of environmental concerns with socio-economic values 

(Williams and Brown, 2014). 
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Environmental modelling is one of the pillars of the adaptive management process, serving 

as “information integrator” that brings together scientists, managers, and other stakeholders in a 

joint assessment of the degree of our understanding of the system being managed along with the 

compelling knowledge gaps we seek to answer through monitoring and research. Models can be 

qualitative and conceptual, quantitative and detailed, or anywhere in between. As simplistic 

representations of natural ecosystems, their application in an adaptive management context 

inevitably introduces the so-called approximation uncertainty (Arhonditsis et al., 2018). This 

uncertainty stems from the imperfect knowledge used and different assumptions made to 

determine model structure and inputs. Model input error mainly stems from the uncertainty related 

Figure 1: The iterative monitoring-modelling-assessment cycles of adaptive management to reduce the environmental 

uncertainty. In Lake Erie, we currently evaluate steps 4 and 5 in order to design steps 6 and 7.    



Page | 3  

 

to the values of model parameters, forcing functions, and initial conditions, as well as from the 

fact that all models are simplifications of the natural system that approximate the actual processes, 

i.e., all parameters are effective (e.g., spatially and temporally averaged) values unlikely to be 

represented by fixed constants (Arhonditsis et al., 2006). Model structure error arises from (i) the 

selection of the appropriate state variables (model endpoints) to reproduce the key physical, 

chemical, and biological components given the management problem at hand; (ii) the selection of 

the more suitable mathematical expressions among a variety of equations used to describe the same 

natural process, e.g., linear, quadratic, sigmoidal, and hyperbolic functional forms to reproduce 

fish predation on zooplankton or Monod vis-à-vis Variable-Internal Stores models to simulate the 

phytoplankton uptake of nutrients from the water column and their conversion into biomass; and 

(iii) the fact that our models are based on relationships which are derived individually in controlled 

laboratory environments but may not collectively yield an accurate picture of the entire 

environmental system (Arhonditsis et al., 2007; 2008a,b). Coupled with other major sources of 

uncertainty (environmental variation, structural uncertainty, partial controllability, and partial 

observability), skeptical views question the ability of models to meaningfully assist the decision 

making process. The counter-argument to this criticism is that the problem of uncertainty is 

precisely where adaptive management is most valuable (Williams et al., 2009). This paradigm 

offers a coherent framework to quantify the uncertainty of initial forecasts of management actions 

and sequentially update them with post-implementation monitoring data; hence, this iterative 

synthesis of monitoring and modelling provides the basis to reduce the uncertainty and revise 

management actions (Fig. 2). Even more so, there are voices arguing that adaptive management is 

better served by introducing multiple competing models that embed alternative hypotheses about 

the system functioning, as the iterative updating cycles will lend support to the optimal subset of 

models that more closely reflects the evolution of the environmental system and its potential 

responses to management actions (Williams et al., 2011; Ramin et al., 2012a). 
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It is thus axiomatic that the intertwined relationship between monitoring and modelling is 

a key to the successful implementation of adaptive management. The commitment among 

managers, scientists, and other stakeholders to establish a sustainable monitoring and assessment 

program is imperative in this process. Both monitoring and assessment of environmental 

conditions should be designed to ensure that data are collected for all the relevant resource 

attributes and within the timeframe required for adaptive-decision making (Williams and Brown, 

2014). Another critical aspect of the design of monitoring programs is the appropriate resolution 

in time and space in order to constrain the existing model(s) and effectively track our progress 

toward accomplishing management objectives. The information from monitoring is then used to 

evaluate management, improve understanding, and guide decision making, and it is thus critical to 

have the appropriate metrics to evaluate the knowledge (or value of information) acquired (Yokota 

Figure 2: Sequential model updating in the context of adaptive management implementation. The interphase between 

model uncertainty analysis and data collection is highlighted as a key process to advance our understanding and management 

actions in Lake Erie. 
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and Thompson, 2004; Williams and Johnson, 2015). The latter endeavor represents our technical 

learning of the response of the environmental system to management interventions, which is 

conceptually (and operationally) nested within the so-called institutional learning or the potential 

to learn about the decision making process itself (Williams and Brown, 2016). Empirical evidence 

suggests that it may take multiple iterations of the technical learning cycle during which the 

institutional framework remains practically unaltered, and only a breakthrough in technical 

learning can prime the pump for revisiting and restructuring the basic institutional elements 

(Williams and Brown, 2014). More recently, this double-loop learning process has been expanded 

to distinguish between the socio-political and governance issues typically included within the 

institutional learning cycle (Pahl-Wostl, 2009; Johnson et al., 2015). 

In this study, we present a technical analysis of all the recent modelling work that has been 

conducted to support the adaptive management process in Lake Erie; the most biologically 

productive system of the Great Lakes. In response to a binational remedial effort in the late 1970s 

and early 1980s, west-central phytoplankton biomass and central-basin hypoxia displayed 

significant improvement in Lake Erie, followed by a general increase since the mid-1990s which 

was likely the cumulative effect of several stressors, including the invasion of exotic species and 

increased agricultural loading of bioavailable phosphorus (Watson et al., 2016). Following the 

evolution of watershed and eutrophication modelling in the literature, Lake Erie represents a 

unique case study where a wide variety of models have been developed to understand the major 

causal linkages/ecosystem processes underlying the local water quality problems (Scavia et al. 

2016a,b,c). Whether statistical (data-driven) or mathematical (process-based), the basic premise 

of these models has been to support the decision-making process by linking watershed 

management actions with the response of the receiving waterbody. We first provide an overview 

of all the models used in the area and subsequently provide a technical analysis of the forecasts 

drawn regarding the likelihood to mitigate the eutrophication phenomena in Lake Erie, based on 

changes in the agricultural management practices followed in the watershed. We then pinpoint 

knowledge gaps and monitoring assessment objectives that should be addressed to ensure that 

resource parameters are adequately measured and appropriately focused on relevant performance 

indicators. Our intent is neither to vilify the modelling enterprise in Lake Erie nor to roundly 

criticize all the models developed. We recognize that a great deal of modelling work has been done 

to offer insights into the watershed and lake processes, and our aim with the present study is to 

impartially identify their strengths and weaknesses. Because of the challenges and complexity of 



Page | 6  

 

the adaptive framework, we believe that all the experiences gained and lessons learned through the 

iterative monitoring-modelling-assessment cycles will consolidate our know-how with the 

management of one of the most intensively studied eutrophic systems worldwide (Michalak et al., 

2013; Scavia et al., 2017). Our thesis is that critical thinking and effective monitoring are two 

fundamental prerequisites for hypothesis testing and robust model foundation in order to achieve 

one of the key aspirations with adaptive management; the reduction of uncertainty.  
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2 Study Area 

Lake Erie is the smallest and shallowest system of the Great Lakes and therefore tends to 

be the most susceptible to nutrient-driven water quality problems (Fig. 3). The shallowest section 

of Lake Erie is the western basin where depths average between 7.6 to 9.1 m; the central basin is 

deep enough to stratify during the summer (mean depth of 18.3 m) typically developing a “thin” 

hypolimnion with a small volume relative to the epilimnion; the eastern basin has an average depth 

of 24.4 m and large hypolimnetic volume. Recent evidence suggests that rapid ecological changes 

have been occurring in Lake Erie that primarily involve the severity of eutrophication phenomena, 

such as an increase in the magnitude and duration of harmful algal blooms (HABs), prolonged 

manifestation of hypoxia in the central basin, and excessive Cladophora growth in the eastern 

basin (Higgins et al., 2008; Depew et al., 2011; Michalak et al., 2013; Scavia et al., 2014; Watson 

et al., 2016). The western part of Lake Erie basin, comprising both the western basin and the 

Huron-Erie corridor (Detroit River Basin) receives >60% of the external annual total phosphorus 

(TP) loading and among all the tributaries across the entire Lake Erie basin, the Maumee River 

watershed is the primary contributor of TP loading (~30%) into Lake Erie (Maccoux et al., 2016). 

The catchment area of Maumee River is approximately 16,480 km2 extending over southern 

Michigan, northwestern Ohio, and northeastern corner of Indiana (Keitzer et al., 2016). Most of 

the watershed is predominantly agricultural (73%) and is characterized by a flat landscape (average 

slope: <2%) and poorly-drained soils. More than 90% of the agricultural land is drained by ditches 

and subsurface drainage, and 85% of phosphorus exports are reported to originate from agricultural 

inputs (e.g., fertilizer and manure applications) (Culbertson et al., 2016). 
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Planktonic blooms in Lake Erie have been characterized by a major shift in the dominant 

species and particularly a rise in the predominance of toxic cyanobacteria (cHABs), such as 

Microcystis and other potentially toxic (Dolichospermum, Planktothrix) species (Millie et al., 2009; 

Allinger and Reavie, 2013; Kane et al., 2015). The majority of these cHABs frequently occur in 

the western basin of Lake Erie, where they cover extensive areas and can persist throughout the 

summer until late fall (Michalak et al., 2013; Steffen et al., 2014). Interestingly, the increased 

frequency in cHABs has occurred without distinct trend in total annual TP loading, but may be 

related to the timing, sources, and increased bioavailability of TP inflows and/or the increased 

frequency of extreme flow events (Scavia et al., 2014; Obenour et al., 2014). The cHAB severity 

Figure 3: Ensemble modelling in Lake Erie. In the Maumee River watershed, five SWAT applications with distinct input 

assumptions and process characterizations have been used to simulate flow and phosphorus loading at a single downstream 

station (Waterville, OH), whereas SPARROW was used to validate a post-hoc delineation of locations with higher propensity 

of phosphorus export (top panel). In Lake Erie, a range of data-oriented and process-based models have been used to 

examine the impact of nutrient loads to ecosystem integrity and to evaluate the achievability of four Ecosystem Response 

Indicators (ERIs) under different watershed management scenarios. Numbers in the Y-axis of the bottom panel stand for: (1) 

western basin cyanobacteria biomass, represented by the maximum 30-day average cyanobacteria biomass; (2) central basin 

hypoxia, represented by number of hypoxic days; average extent of hypoxic area during summer; and average hypolimnion 

DO concentration during August and September; (3) basin-specific overall phytoplankton biomass, represented by summer 

average chlorophyll a concentration; (4) eastern basin Cladophora, represented by dry weight biomass and stored P content. 

The models included in the multi-model ensemble strategy are: UM/GLERL Western Basin HAB model; NOAA Western 

Basin HAB model; Total Phosphorus Mass Balance Model (TP-MB); 1-Dimensional Central Basin Hypoxia Model (CBHM); 

Ecological model of Lake Erie (ECOLE); Western Basin Lake Erie Ecosystem Model (WLEEM); Estuary and Lake Computer 

Model-Computational Aquatic Ecosystem Dynamics Model (ELCD); Eastern Basin Cladophora Model (GLCM). 
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has been causally linked to the volume of spring runoff from the Maumee River watershed, as well 

as to the elevated dissolved phosphorus inputs from the western basin tributaries (Stumpf et al., 

2102; Watson et al., 2016). Growing evidence also highlights the broader role of dreissenid 

mussels in the ambient conditions (enhanced water clarity, selective particle removal, and soluble 

nutrient recycling), the supply and chemical speciation of N, the increasingly calm summer 

conditions, and the increasing reservoir of Microcystis seed colonies within Lake Erie’s benthos 

(Munawar et al., 2008; Rinta-Kanto et al., 2009; Horst et al., 2014; Davis et al., 2015).  

The proliferation of Cladophora along the northern shores of the eastern basin since the 

mid-1990s, was primarily attributed to the increased water clarity and suitable substrate following 

the colonization of the area by dreissenid mussels (Higgins et al., 2005). Nutrient-rich 

hypolimnetic masses of water transported in nearshore through upwelling events, excreted 

metabolic wastes, and/or particulate matter available for re-mineralization through egestion of 

non-edible algae by dreissenids are the likely suppliers of nutrients in the benthic environment 

(Wilson et al., 2006; Depew et al., 2011; Valipour et al., 2016). The magnitude, duration, and 

frequency of hypoxia is predicted to be exacerbated by climate change via a number of 

mechanisms such as increased water temperature, deeper and longer stratification, and increased 

nutrient runoff during winter and spring (Fang and Stefan, 2009; Jiang et al., 2012). Because of its 

bathymetry, the severity of hypoxia in central Lake Erie can display both intra- and inter-annual 

variability driven by the impact of local weather conditions (e.g., wind, temperature) on physical 

processes such as mixing, within- and between-basin circulation, and water-column stratification 

(strength, depth), which in turn influence the rate of dissolved oxygen (DO) depletion, sediment-

oxygen demand, and DO transfer across the thermocline (Zhou et al., 2013; Rucinski et al., 2014). 

Consistent with these predictions, a record-breaking hypoxic event occurred in Lake Erie in 2012, 

following a period of prolonged drought and low tributary flows (Stow et al., 2015).  

  



Page | 10  

 

3 Model Ensembles and Adaptive Management 

Implementation 

Recognizing the need to address these ominous water quality trends, the International Joint 

Commission (IJC) formulated the Lake Erie Ecosystem Priority taskforce in 2012 to develop a 

sustained restoration plan by identifying knowledge and monitoring gaps, evaluating current 

conditions, and providing guidance for management targets (IJC, 2014; Watson et al., 2016). This 

initial IJC review, and associated work by binational taskforces, led to commitments for remedial 

action in the 2012 renewed Canada-USA Great Lakes Water Quality Agreement (GLWQA). 

Nutrients, algal biomass, and hypoxia are addressed under Annex 4 of this Agreement, with special 

emphasis on setting interim TP load and basin-specific concentration targets for Lake Erie. As part 

of the GLWQA review, a committee of modellers evaluated a set of Great Lakes eutrophication 

models that were designed to establish target TP loads in order to mitigate the eutrophication 

symptoms in the early 1970s (Scavia et al., 2016a). While the post-audit performance of the 

original eutrophication models in Lake Erie was satisfactory (e.g., Di Toro et al., 1987; Lesht et 

al., 1991), their basic structure was not deemed adequate to reproduce the relative importance of 

nearshore processes, the wide array of factors triggering HAB formation or the proliferation of 

nuisance benthic algae, and the role of other external stressors, such as invasive species or climate 

change (Scavia et al., 2016a,b,c). To address the wide range of conceptual and operational 

uncertainties typically characterizing any modelling exercise, the local community opted for a 

novel multi-model strategy that aimed to capitalize upon the wide variety of both empirical and 

process-based models of variant complexity that have been developed for Lake Erie over the past 

decade (Scavia et al., 2016a,b,c). 

Being primarily a reflection of our current level of understanding and existing 

measurement technologies, the multi-model strategy adopted for Lake Erie accommodates the fact 

that many different model structures and many different parameter sets within a chosen model 

structure can acceptably reproduce the observed behavior of a complex environmental system 

(Beven and Freer, 2001; Christakos, 2003; Arhonditsis et al., 2007; 2011). While this very 

important notion is still neglected in the modelling literature, there are viewpoints suggesting that 

environmental management decisions relying upon a single, partially adequate model can 

introduce bias and uncertainty that is much larger than the error stemming from a partially 

defensible selection of model parameter values (Neuman, 2003). Importantly, the practise of 

basing ecological predictions on one single mathematical model implies that a valid alternative 
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model may be omitted from the decision making process (Type I model error), but also that our 

forecasts could be derived from an erroneous model that was not rejected in an earlier stage (Type 

II model error). Recognizing that there is no true model of an ecological system, but rather several 

adequate descriptions of different conceptual basis and structure, the development of model 

ensembles is a technique specifically designed to address the uncertainty inherent in the model 

selection process. Instead of picking the single “best-fit” model to draw ecological forecasts, we 

can use a multi-model ensemble to derive a weighted average of the predictions from different 

models (Ramin et al., 2012a). 

Notwithstanding the voices in the literature asserting that we are still missing rigorous 

methodological frameworks to develop multi-model ensembles (Neuman, 2003), the basic 

framework comprises several steps related to the development of “truly” distinct, site-specific 

conceptual models, selection of the optimal subset of both data-driven and process-based models, 

effective combination of these models to synthesize predictions, and subsequent assessment of the 

underlying uncertainty (Fig. 4). This methodological procedure involves three critical decisions 

aiming: (i) to identify the conceptual or structural differences of the existing models (ensemble 

members), and thus determine the actual diversity collectively characterizing the model ensemble; 

(ii) to determine the most suitable calibration/validation domain for evaluating model performance 

in time and space; and (iii) to establish an optimal weighting scheme in order to assign weights to 

each ensemble member, when integrating over the individual predictions, and determine the most 

likely outcome along with the associated uncertainty bounds (Ramin et al., 2012a). In this study, 

we dissect the two model ensembles developed for the Maumee River watershed and the Lake Erie 

itself and evaluate their compliance with the aforementioned framework (Fig. 3).  
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In terms of model diversity, the watershed modelling work has been based on five 

applications of the same complex mathematical model (i.e., SWAT), each application reflected an 

independent attempt to characterize the processes that modulate phosphorus export from Maumee 

River. As such, even though the mathematics were the same (i.e., SWAT equations), the five 

models collectively capture some of the uncertainty related to our understanding of watershed 

attributes and functioning, and thus this exercise qualifies to be treated as an ensemble strategy 

(Kim et al., 2018a). Alongside the five SWAT applications, an empirical model (SPARROW) was 

also used to validate a post-hoc delineation exercise of locations with higher likelihood of 

phosphorus export in the Maumee River watershed. On the other hand, the lake ensemble has been 

based on a wide range of data-driven and process-based models to examine the achievability of 

different environmental targets under various external nutrient loading regimes (Shimoda et al., 

Figure 4: Ensemble modelling is the process of running two or more related (but different) models with respect to their 

conceptual/structural characterization and input specification, and then synthesizing the results into a single score or spread 

in order to improve the accuracy of predictive analytics and data mining applications. The development of a weighting 

scheme to determine the relative contribution of each model to the ensemble predictions is missing from the current Lake 

Erie modelling work 
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2018). Beyond the structural diversity of the models in place, our study also attempts to identify 

their actual variability in terms of the characterization of fundamental biogeochemical processes 

modelled, ecological insights gained, and the nature of predictions drawn. Our thesis is that the 

true diversity of a model ensemble is not solely determined from the complexity of the 

mathematics or the number of system components simulated, but also from the specification of the 

ecosystem functioning, as determined by the decisions made during the calibration and validation 

phase of the individual models, which ultimately shape the forecasts derived to guide the policy-

making process. Regarding the model assessment, the typical criteria used are the degree of 

prediction errors (skill; the difference between predictions and observations); the relative 

goodness-of-fit for the different model endpoints (bias; differences in the model fit among flow, 

total and dissolved reactive phosphorus loading along with the nature of the error, i.e., over- or 

under-estimation); and the degree of divergence of the individual model forecasts when forced 

with various management scenarios (forecasting spread) (Arhonditsis and Brett, 2004; Arhonditsis 

et al., 2011). In this study, we will examine if the three criteria have been consistently evaluated, 

to what extent the model assessment was based on suitable calibration/validation domains and 

spatiotemporal scales relevant to the environmental management problems in question, and 

whether or not the performance assessment was used to determine the relative weights that each 

model carried during the synthesis of the individual predictions.    

3.1 SWAT-based Ensemble Strategy for the Maumee River Watershed: Description, 

Performance, and Outstanding Questions.  

In the Great Lakes area, a wide range of process-based models have been used to 

characterize the watershed processes associated with the hydrological cycle and nutrient fate and 

transport, but the Soil and Water Assessment Tool (SWAT) model alone represents more than >70% 

of the watershed modelling studies published for Lake Erie in the peer-reviewed literature (Kim et 

al., 2018a; Dong et al., 2018). SWAT is a physically-based, semi-distributed watershed model that 

can operate on various time (sub-daily to annual) steps and its structure can accommodate the 

weather generation, watershed topography, hydrological processes, and agricultural practices 

(Neitch et al., 2011). The watershed is disaggregated into subbasins and these subbasins are 

subsequently subdivided into hydrological response units (HRUs), which represent distinct 

combinations of soil and land use characteristics. The water balance of each HRU in the watershed 

is based on four storage volumes: snow, top soil (0-2 m), shallow aquifer (2-20 m), and deep 

aquifer (>20 m). Surface runoff is commonly estimated using the Curve Number (CN) method, 
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and sediment erosion is calculated with the Modified Universal Soil Loss Equation (Arnold et al., 

1998). Nutrient (nitrogen and phosphorus) dynamics are reproduced by considering both mineral 

(stable, active, and soluble) and organic (stable, active, and fresh) forms. The preference for SWAT 

over other watershed models is likely due to its ability to carry continuous long-term simulations 

in predominantly agricultural watersheds, as well as to reproduce the impact of episodic rainfall 

events at finer (i.e., daily or sub-daily) resolutions (Neitch et al., 2011; Wellen et al., 2014a,b). 

While SWAT has a well-documented potential to offer an insightful tool for the examination of 

agricultural best management practices (BMPs), it should be noted that there are other models 

(Storm Water Management Model or SWMM, MIKE SHE) available with technical features more 

relevant for the representation of urban environments (Dong et al., 2018; see also following 

discussion).  

Like many watershed models, SWAT is basing its predictive capacity on the explicit 

consideration of a wide array of physical, chemical, and biological processes that can shape 

downstream flow and nutrient export conditions. This strategy -in principle- renders greater 

assurance that all the potentially important mechanisms operating in a watershed context are 

accounted for, and thus the application domain of the model can be effectively extended (Beven, 

2006; Pappenberger and Beven, 2006). However, increasing model complexity inevitably 

magnifies the disparity between what we want to learn from a model and what we can realistically 

measure/monitor given the available technology or resources at hand (Arhonditsis et al., 2008a,b; 

Rode et al., 2016). Opting for an increased model complexity without a commensurate increase in 

the available empirical knowledge exacerbates the problem of under-determination, and thus we 

experience a situation whereby several distinct choices of model inputs lead to the same model 

output, or alternatively many sets of parameters fit the data about equally well. This non-

uniqueness of model solutions, also known as equifinality, negates the main function of 

mathematical models as inverse analysis tools, i.e., the available data for the dependent variables 

(flow, suspended solids, nutrient concentrations) are used through the model training (or 

calibration) phase to advance our knowledge of independent variables (model parameters) 

typically representing fundamental processes/fluxes of the water budget and/or nutrient cycles. To 

overcome the latter problem, the modelling work in Maumee River watershed was built upon five 

SWAT model applications from groups affiliated with Heidelberg University (HU), LimnoTech 

(LT), Ohio State University (OSU), Texas A&M University (TAMU), and the University of 

Michigan (UM) (Culbertson et al., 2016; Gildow et al., 2016; Kalcic et al., 2016; Keitzer et al., 
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2016; Muenich et al., 2016). Based on different assumptions and independent calibrations, each 

model reflects a distinct characterization of the watershed processes modulating flow dynamics 

and phosphorus loading export. Thus, the five SWAT applications collectively represent an attempt 

to capture our incomplete knowledge of watershed attributes and functioning, and create an 

uncertainty envelope that can be propagated when the models are used for forecasting purposes 

and land-use management scenarios (Kim et al., 2018a; Dong et al., 2018). It is also important to 

note that the characterization of the processes associated with the nitrogen cycle has not been 

studied yet, even though the relative contribution of different nitrogen (N) species from the 

Maumee River watershed is likely to be one of the regulatory factors of the downstream water 

quality conditions; especially the composition of the phytoplankton community.      

The calibration of the five SWAT models covered different the time spans, 4 years for HU 

(2009-2012), 13 years for LT (1998-2013), 10 years for OSU (2000-2009) and TAMU (1990-1999), 

and 5 years for UM (2001-2005) (Scavia et al., 2016c). Consequently, each model used different 

landscape (e.g., land-use/land-cover data) and meteorological information (see Table 1 in Kim et 

al., 2018a). Moreover, the five SWAT models differed with respect to the agricultural inputs used, 

such as fertilizer and manure application rates. In particular, each model postulated different 

fertilizer application rates from different sources of information, such as tri-state standards for HU 

and OSU, USDA-ARS for LT, agriculture census data for TAMU, and county fertilizer sales data 

for UM. Regarding the manure application, only two models (LT and UM) explicitly considered 

the role of this potentially important source of organic nutrient release in the soils. Another critical 

source of uncertainty revolved around the tile drainage assumptions. Three of the SWAT 

applications (LT, OSU, and UM) postulated that tiles are deployed at poorly-drained agricultural 

lands, but each model was based on different definitions of the categories of poorly-drained 

conditions (see Table 1 in Kim et al., 2018a). Two models, HU and TAMU, also assumed that the 

tile drainage of the Maumee River watershed is highly correlated with low-slope areas, i.e., the 

HU model used a 3% slope to distinguish between steep and flat areas, while the cutoff point for 

TAMU was less than 1% slope. All five SWAT models were calibrated against a single downstream 

station (Waterville, OH), while the LT model used two additional upstream sites (Blanchard and 

Tiffin) for a subsequent validation exercise (Scavia et al., 2016c). Consistent with the 

methodological practice recommended in the literature (Fig. 4), the five SWAT applications were 

based on identical validation time periods (from 2005 to 2014), which in turn (partly) insured their 

comparability for the purposes of a post-hoc ensemble synthesis (Kim et al., 2018a).  
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Table 1. Predictive validation of the five SWAT models against monthly flow and phosphorus loading at Waterville, 

Ohio, from 2005-2014. Values close to 0 for percent bias (PBIAS) and 1 for the Nash-Sutcliffe efficiency (NSE) and 

the coefficient of determination (r2) indicate higher model performance.  

 
Measures 

of Model Fit* 

Models 

HU LT OSU TAMU UM Model 

Average 

Flow 

PBIAS -7% 10% 10% 11% 6% 6% 

MEF 0.82 0.90 0.91 0.86 0.89 0.88 

r2 0.86 0.91 0.93 0.88 0.91 0.90 

TP 

PBIAS 37% -6% -7% -22% 7% 2% 

MEF 0.64 0.82 0.73 0.56 0.70 0.69 

R2 0.74 0.82 0.75 0.71 0.70 0.75 

DRP 

PBIAS 81% 1% 16% -13% -13% 14% 

MEF -0.02 0.71 0.51 0.52 0.46 0.44 

r2 0.55 0.71 0.54 0.70 0.51 0.60 

* 𝑃𝐵𝐼𝐴𝑆 =
∑(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)×100 

∑ 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑
 𝑀𝐸𝐹 = 1 −

∑(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2 

∑(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑−𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒)2 
 

r2=
∑[(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑−𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒)×(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒)]

∑(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑−𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒)2 ×∑(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒)2 
 

Prior to conducting the validation exercise, Scavia et al. (2016c) specified the criteria of 

excellent fit against the flow rates to be lower than ±10%, higher than 0.5, and higher than >0.6 

for the percent bias (PBIAS), modelling efficiency (MEF), and coefficient of determination (r2), 

respectively. Likewise, the excellent performance for phosphorus loading was determined to be 

PBIAS <±25%, MEF >0.4 and r2 >0.5. Based on these pre-specified performance standards, the 

five SWAT models showed nearly excellent goodness-of-fit against measured monthly flow rates 

and phosphorus loading empirical estimates (Table 1). The OSU model reported the best 

agreement against the measured flow rates in terms of MEF (0.91), PBIAS (10%), and r2 (0.93). 

By contrast, the HU model was the only SWAT model that underestimated the flow rates (PBIAS: 

-7%) and showed the lowest MEF (0.82) and r2 (0.86) among the five models. Regarding the TP 

and dissolved reactive phosphorus (DRP) loading predictions, the individual SWAT applications 

presented lower goodness-of-fit for both estimates, but the performance for TP (MEF: 0.56-0.82 

and r2: 0.70-0.82) was higher than for DRP (MEF: -0.02-0.71 and r2: 0.51-0.71). The LT model 

outperformed the other four SWAT applications in its ability to capture the monthly TP and DRP 
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load variability, whereas the HU model significantly overestimated the TP (PBIAS: 37%) and DRP 

(PBIAS: 81%) loads. Given that the same SWAT application underestimated the flow rates, the 

latter result suggests that the simulated concentrations were distinctly overestimated to the extent 

that not only compensated for the underpredicted flows but also led to excessively higher 

phosphorus loading predictions (Kim et al., 2018a). By contrast, the TAMU model clearly 

underestimated TP and DRP loads (-22% and -13%, respectively) comparing with the 

overestimated flow rates (11%), which again is indicative of an even greater bias (i.e., 

underprediction) for the corresponding concentrations.  

One of the critical skill assessment tests of a dynamic watershed model, like SWAT, is its 

ability to support predictions at a finer (daily or subdaily) time scale (Wellen et al., 2015. 

Surprisingly, the SWAT modelling work in the Maumee River watershed placed little emphasis on 

evaluating the robustness of the hydrological or nutrient loading predictions with such a temporal 

resolution. To shed light on this important issue, Kim et al. (2018a) independently evaluated the 

error associated with the daily outputs from the UM model and showed that the simulated TP and 

DRP concentrations are characterized by a substantial error (see their Figs 4 and S2). Importantly, 

the same study evaluated the ability to capture the impact of episodic precipitation events, by using 

a peak-flow threshold of 1000 m3 s-1 to separate extreme events from the rest of the flow conditions 

over the course of a 5-yr period (2001-2005). The results showed that the UM SWAT consistently 

underestimated the flow rates in 20 out of 22 events (≈ 91%), reinforcing the point that an excellent 

goodness-of-fit with a coarser (seasonal or monthly) resolution may simply stem from multiple 

daily errors/biases that cancel each other out when seasonally or monthly averaged, and thus does 

not necessarily guarantee acceptable performance against finer time scales (Arhonditsis and Brett, 

2004). Given that the UM displayed the lowest discrepancy against the monthly flows (PBIAS: 6%) 

and TP loading (7%) among the five SWAT applications (Table 1), it stands to reason that the rest 

of the models likely fare worse with their daily simulations. If we also consider the emerging 

evidence of a disproportionally high fraction of the total annual loading occurring during event-

flow conditions, it is particularly critical to strengthen the ability of the SWAT-ensemble to assess 

the impact of episodic/extreme rainfall events and elucidate their role on the broader watershed 

dynamics.  

The potential impacts of climate change on hydrological extremes have received 

considerable attention during the last decade. It is predicted that global warming will amplify the 

hydrological cycle, and thus less frequent but more intense precipitation events could increase the 
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severity of within-season drought, alter evapotranspiration, and generate greater runoff 

(Huntington, 2006; Knapp et al., 2008; Goodess, 2013). In the same context, recent empirical 

evidence is on par with these projections suggesting that (i) total phosphorus and phosphate loads 

can vary by three orders of magnitude between wet and dry conditions; (ii) storm events and spring 

freshets play a predominant role with the peak daily loads in urban and agricultural watersheds, 

respectively; (iii) a significant fraction (>50%) of the annual phosphorus loads can be generated 

during a small number of brief but intense precipitation events; and (iv) the flow-concentration 

relationship can be significantly influenced by the watershed physiography, land-use patterns, and 

antecedent soil moisture conditions (Green et al., 2007; Long et al., 2014; 2015). On the other 

hand, an overarching flow-concentration paradigm for N species is even less clear relative to that 

for phosphorus. Contrary to our understanding of TP fate and transport, a greater proportion of 

total nitrogen (TN) is found in the dissolved phase due to relatively high solubility of nitrogen 

species, such as nitrite and nitrate, and can be transported by both overland and subsurface flow 

paths (Long et al., 2014). Furthermore, subsurface leaching of nitrate, and hence transport to 

groundwater, is generally greater than phosphate due to immobilization of phosphate by clay and 

other soil chemical constituents. Thus, one of the working hypothesis is that phosphorus and 

certain N species (ammonia, total Kjeldahl nitrogen) will be distinctly higher during precipitation 

and snowmelt events, while nitrate will display chemostatic behavior (i.e., apparent stability of the 

concentrations relative to the flow variability) (Godsey et al., 2009; Long et al., 2014). Another 

testable hypothesis is that the nutrient loads per unit area will be significantly higher from urban 

relative to agricultural watersheds and may be further exacerbated with climate change, as 

hydrological behavior can change above certain discharge or precipitation thresholds (Wellen et 

al., 2014a,b; Kim et al., 2016, 2017). Climate warming will increase the vulnerability of soils to 

erosion in winter (snowpack decrease, early onset of spring snowmelt, frequent rainfall events, 

and snowmelt episodes), and consequently the contemporaneous sediment and nutrient loadings 

relative to current levels. It is critical to understand the potential changes in the interplay among 

catchment state, land use, and nutrient export patterns induced by a changing climate, and this is 

another area where little work has been done in the Maumee River watershed.  

3.2 Multi-model Ensemble Strategy for Lake Erie: Description and Performance  

Counter to the watershed modelling framework for the Maumee River Watershed, the 

multi-model approach for the lake itself comprised a range of data-oriented and process-based 
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models to examine the impact of nutrient loads to ecosystem integrity in Lake Erie and to evaluate 

the achievability of Ecosystem Response Indicators (ERIs) under different watershed management 

scenarios (Fig. 3; see also Scavia et al., 2016a,b). The primary advantage of the suite of models 

used was their ability to capitalize upon the advantageous features of both statistical and process-

based approaches; namely, the former models are derived from empirical parameter estimation 

that allows for rigorous assessment of predictive uncertainty, while the latter ones have the 

mechanistic foundation that can conceivably enable to draw predictions outside the domain used 

during their calibration or even validation (Arhonditsis et al., 2007). Regarding the diversity of the 

process-based modelling work for Lake Erie, the models developed come from the entire 

complexity spectrum with different strengths and weaknesses (Scavia et al., 2016a,b). There are 

simple models in place with fewer unconstrained parameters that can be more easily subjected to 

uncertainty analysis, but they are also criticized as being crude oversimplifications not capable of 

reproducing the wide range of ecosystem behaviours. By contrast, there are complex models with 

numerous ecological processes and more sophisticated parameterization that are presumably more 

suitable to capture any potential non-linear system responses to distinct changes in external or 

internal conditions (e.g., land-use management, climate change, invasive species), but the main 

criticisms are their inevitably poor identifiability that may lead to ecosystem mis-

conceptualizations, as well as their high computational demands that can be prohibitive in 

comprehensively quantifying their structural or parametric uncertainty (Arhonditsis and Brett, 

2004; Arhonditsis et al., 2007). 

Specifically, the models included in the multi-model ensemble strategy were two empirical 

models, UM/GLERL Western Basin HAB model (Bertani et al., 2016) and  NOAA Western Basin 

HAB model (Stumpf et al., 2016), and six process-based models: Total Phosphorus Mass Balance 

Model (TPMB; Chapra et al., 2016), 1-Dimensional Central Basin Hypoxia Model (1D-CBH; 

Rucinski et al., 2016), Ecological model of Lake Erie (EcoLE; Zhang et al., 2016), Western Basin 

Lake Erie Ecosystem Model (WLEEM; Verhamme et., 2016), the Estuary and Lake Computer 

Model-Computational Aquatic Ecosystem Dynamics Model (ELCOM-CAEDYM or ELCD in Fig. 

3; Bocaniov et al., 2016); Eastern Basin Cladophora Model (EBC or GLCM in Fig. 3; Valipour et 

al., 2016). The multi-model ensemble exercise for Lake Erie also included the Nine-Box model 

(Lam et al., 2008); a coarse grid (9-box) phosphorus mass balance model designed to offer 

quantitative understanding of Lake Erie eutrophication (organic and dissolved-phase phosphorus) 

and related hypoxia (Lam et al., 1983). Although the model was extensively calibrated and 
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validated against measurements from the mid-1960s until the early 1980s, and subsequently 

recalibrated to reproduce the water quality conditions during the post-dreissenid period, its use for 

the construction of load-response curves was fairly minimal (Scavia et al., 2016b). It was thus 

omitted from the present synthesis, but it must be noted that the Nine-Box model has the potential 

to offer a parsimonious management tool after the addition of several critical variables and 

ecological processes related to the planktonic food web of Lake Erie (Lam et al., 2008).  

In reviewing the pertinent literature, a first notable finding is that the local modelling work 

has closely followed the recommended methodological protocol when developing models intended 

to assist environmental management (Fig. 2). Following the evolution of each model over time, 

we can find detailed sensitivity analysis exercises and goodness-of-fit statistics against a wide 

range of multi-year conditions, while Scavia et al. (2016a,b) also attempted to draw parallels 

among the different models and offer a much-needed synthesis in order to establish the multi-

model forecasting tool. On the other hand, because of the complexity of the existing mechanistic 

models in Lake Erie, the rigorous quantification of their uncertainty can be particularly challenging 

and thus has not received significant attention. A plausible way to control model uncertainty is to 

capitalize upon the findings of the sensitivity analysis exercises presented in the local literature by 

obtaining empirical estimates for critical/influential parameters or other inputs, which can be 

directly measured in the field or experimentally quantified (see also discussion in Kim et al., 

2018a). There are also promising statistical ways (e.g., linear or non-linear emulators) to overcome 

the cumbersome structure of complex models (e.g., ELCOM-CAEDYM, WLEEM, EcoLE) and 

quantify their uncertainty that should be considered in the next iteration of the modelling 

framework (Kim et al., 2014). Consistent with the general trend in the international modelling 

literature (Arhonditsis and Brett, 2004), we found that the performance of the aquatic ecological 

models in Lake Erie declined from physical-chemical to biological components of planktonic 

systems (Fig. 5). Regarding our skill assessment analysis, it is important to note that it is based on 

a point comparison in time and space, as oppose to the aggregated spatiotemporal (basin- or lake-

wide, seasonal/annual time) scales adopted from the local modelling community (see following 

discussion). Counter to the SWAT-ensemble framework, it is also worth mentioning that there is 

no identical validation time period, within which the performance of all the process-based models 

across different water-quality variables has been examined, and thus –strictly speaking- the basic 

condition to ensure their comparability for the purposes of a post-hoc ensemble synthesis is not 

met. A brief description of the basic technical features and performance against existing data of 
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each member of the multi-model ensemble is provided in the following section, while more details 

about their structure and assumptions can be found in Scavia et al. (2016a,b) and references therein. 

U-M/GLERL Western Lake Erie HAB model: This is a regression model originally 

developed by Obenour et al. (2014) to predict peak HAB size in western Lake Erie as a function 

of spring TP loading from the Maumee River. An interesting feature of this empirical construct is 

the consideration of a temporal trend component aiming to capture the variability over time in the 

lake's susceptibility to HAB formation. The optimal TP loading period (i.e., January-June) for 

predicting bloom size was assessed probabilistically using a weighting parameter that represents 

the temporal threshold, prior to which loading does not contribute to the late-summer algal bloom. 

More recently, Bertani et al. (2016) further refined the model by introducing an expression to 

estimate probabilistically the fraction of the particulate P load that becomes bioavailable. The 

model was jointly calibrated against three sets of bloom observations: (i) MERIS satellite remote 

sensing imagery (Stumpf et al., 2012); (ii) in situ measurements from a plankton sampling program 

(Bridgeman et al., 2013); and (iii) SeaWiFS satellite remote sensing imagery (Shuchman et al., 

2006). A Bayesian hierarchical configuration enabled the characterization of the observation error 

with each dataset as well as the realistic quantification of the total predictive uncertainty of the 

derived annual bloom size. In its most recent calibration, the model accommodated the impact of 

dreissenids on P recycling by increasing the bioavailability of particulate phosphorus (PP) to algae 

(i.e., a prior probability was assigned to the relevant parameter postulating that the readily 

bioavailable PP discharged from tributaries should be at least 20%). The model explained over 

91% of the year-to-year variability in bloom observations over the course of seventeen (17) years 

(1998-2014), while cross-validation performance remained relatively high, 80.6% (Scavia et al., 

2016b).  

These results are certainly promising, but it is important to note that the sample size (or 

time span covered) for the model training phase is still small, and thus each annual observation 

(i.e., pair of spring loading and bloom size values) carries significant weight on the form of the 

resulting equation as well as on the predictions drawn. In particular, a leave‐one‐year‐out cross‐

validation exercise (i.e., removal of observations from each year, re-calibration of the model 

against the remaining data, and then forecasting of the excluded observations) revealed wide 

ranges for all the posterior estimates of the model parameters (see Table B2‐4 in Scavia et al., 

2016b). Along the same line of evidence, Bertani et al. (2016) noted that the additional years used 

for the calibration contain the markedly higher bloom sizes in 2013 and 2014 than in previous 
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years, suggesting that the lake may becoming more susceptible to cyanobacteria blooms over time, 

with smaller loads apparently triggering larger blooms in most recent years. The latter finding was 

on par with Obenour et al.’s (2014) positive posterior estimate of the temporal trend term, which 

reinforces the point of an increased propensity for bloom formation in Lake Erie over time. A 

characteristic example of the latter finding is that the model predicts a bloom size of 15,700 MT 

(95% predictive interval: 5,000‐23,700) associated with a spring weighted TP load of 204 

MT/month for the 2013 conditions, while the same bloom size prediction is provided by twice as 

high weighted TP load in 2008 (Scavia et al., 2016b). 

NOAA Western Lake Erie HAB model: This is another regression model that attempts to 

elucidate the primary factors modulating the severity of summer cyanobacterial blooms in western 

Lake Erie, which in turn was first quantified by the Medium Resolution Imaging Spectrometer 

(MERIS) satellite imagery data. Using as a surrogate of total cyanobacteria biomass, the 

“cyanobacteria index” (CI) (Wynne et al., 2008; 2010), the original models presented by Stumpf 

et al. (2012) were based on a 10-year dataset (2002-2011). With the loss of MERIS data in April 

2012, the Moderate Resolution Imaging Spectroradiometer (MODIS) data were employed for the 

subsequent four years (Stumpf et al., 2016), but it was noted that MERIS produces a more sensitive 

proxy (nominal uncertainty 10%) with less noise than MODIS (nominal uncertainty 25%). The CI 

is determined in 10‐day composites by taking the highest cyanobacterial chlorophyll-related index 

at each pixel available from any of the daily images within a given 10-day time period, and thus 

remove interference and biasing from clouds. The annual CI used to define the bloom severity is 

the average of the three 10‐day periods around the maximum severity of the bloom, so it is 

effectively a 30‐day average which is then converted to biomass using a ratio of 4800 MT per CI 

(Scavia et al., 2016b). 

According to Stumpf et al. (2016), the Maumee River discharge and total bioavailable 

phosphorus (TBP) loading from March through July, with July excluded only when June water 

temperatures were below the optimal temperature (20°C), were the best predictors for Microcystis 

growth. Drawing similarities with Bertani et al. (2016), TBP was specified as the sum of the 

dissolved reactive phosphorus and the proportion of particulate phosphorus that is bioavailable, 

corrected for loss due to settling in the river. For the purposes of the multi-model ensemble forecast 

exercise, Scavia et al. (2016b) developed a variation of the previous models using as predictor the 

TP loading from March to July for all years, except 2003 and 2008, when the July temperature 

average was lower than 18°C. The latter model explained 62% on the observed variability of the 
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annual cyanobacteria bloom CI data, but the standard error of the slope was 24% of the mean slope 

estimate, and the uncertainty factor was approximately equal to 1.95 (or simply put, the CI 

predictions derived by the model are correct within a factor of 2). Similar to the U-M/GLERL 

Western Lake Erie HAB model, the “leave‐one‐out” test was indicative of a substantial sensitivity 

of the model intercept and slope to the individual years included in the calibration dataset; 

especially when the CI-TP loading pair for 2012 is considered (see Table B1‐1 in Scavia et al., 

2016b). Considering that this is a simple exponential model (i.e., without the ability to 

accommodate the long-term trends in the susceptibility of Lake Erie), the analysis of TP loading 

scenarios provided very optimistic forecasts, suggesting that a 40% load reduction will 

significantly reduce the likelihood of severe cyanobacteria blooms, even for years when river 

discharge will be excessively high (Scavia et al., 2016b). To put these forecasts into perspective, 

Stumpf et al. (2016) cautioned that the model in its current exponential form may not be able to 

capture the biomass-loading relationship during extreme years, like the 2015 bloom, and instead a 

logistic (sigmoidal-type) function could be a more suitable model. Notwithstanding the plausible 

ecological arguments to adopt an equation that postulates a “saturation-type” pattern (or a smaller 

increase rate of the bloom size) when excessively TP loading are experienced in Lake Erie (Stumpf 

et al., 2016), an alternative explanation could be that the capacity of satellite images to characterize 

the algal bloom severity has an upper bound, as the satellite data cannot quantify the additional 

biomass production once scum completely covers the entire area of water observed in each pixel.    

Total Phosphorus Mass Balance Model: This is a simple phosphorus budget model 

originally used to establish phosphorus loading targets for the 1978 Great Lakes Water Quality 

Agreement (Chapra, 1977; Chapra and Robertson, 1977; Chapra and Sonzogni, 1979). The 

governing model equation predicts offshore TP concentrations, as a function of external loading, 

inter-segment hydrodynamic exchanges, and net sedimentation losses. Evolved from the original 

spatial segmentation, the model currently divides Lake Erie into three completely mixed 

compartments (western, central, and eastern basins), while the within-lake intersegment flow 

exchanges were derived by annual water balance estimates (tributary flows, lake level variability, 

and over-lake precipitation minus evaporation). Alongside the advective transport, the model 

considers a bulk mixing coefficient which is a phenomenological parameter aiming to capture 

large-scale diffusive exchanges across open boundaries, such as large-scale eddy diffusion, and 

dispersion due to shear flow and spatial non-uniformities. The latter feature was parameterized 

with a chloride budget model (see Table 3 in Chapra et al., 2016), and the TPMB model was 
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subsequently calibrated against median offshore TP concentrations by simply adjusting the 

segment-specific, apparent settling velocities. Thus, the model offers a parsimonious construct to 

obtain first-order approximations of the in-lake processes that collectively modulate the ambient 

TP variability. The goodness-of-fit statistics were suggestive of satisfactory TPMB performance 

with a root mean square error between 3.6-5.4 μg L-1 and a percent relative error (RE) between 26-

29% (study period 1970-2010). The discrepancy between modelled and measured TP 

concentrations was attributed to the predominant role of the basin-specific tributary loadings, but 

other factors, such as errors stemming from the intersegment advective/diffusive mass exchanges 

or the segment-specific apparent settling velocities, were not ruled out (Chapra et al., 2016). 

According to Occam’s razor (or principle of parsimony), models should be as simple as 

possible, but not simpler to the extent that we fail to consider important facets of the system 

modelled (Paudel and Jawitz, 2012). The TPMB application in Lake Erie is no exception, as the 

fitting exercise pinpointed the need to assign higher apparent settling velocities in order to 

reproduce the higher P retention during the post-1990 period. A suite of mechanisms were 

suggested to provide the ecological underpinning of such structural augmentation, such as the 

dreissenid filtration that enhanced transport to the sediments; the proliferation of soft sediment 

settlers, i.e., quagga mussels (Dreissena bugensis), that may contribute to permanent P trapping in 

the sediments, structural shifts in algal community towards fast sinking diatoms due to low P 

availability, nearshore organic matter that could be getting sequestered in offshore bottom 

sediments, and gradual increase of bioavailable phosphorus in the exogenous loading (Chapra et 

al., 2016). Following the TPMB evolution over the course of the past thirty years, there are several 

illustrations on how additional complexity can be accommodated by the present structure, while 

maintaining its parsimonious character (Yaksich et al 1985; Lesht et al. 1991; Gudimov et al., 

2012; Shimoda and Arhonditsis, 2015; Katsev, 2017). On a final note, the predicted TP for each 

lake segment were causally linked with two trophic indicator variables, summer chlorophyll a and 

Secchi disk depth, based on the empirical relationships described in Dove and Chapra (2015); see 

their Figs 11 and 12. It is important to recognize though that (i) the two equations were derived by 

pooled data from all of the Great Lakes, (ii) the corresponding regression models explained 

between 55-60% of the observed variability, and (iii) the reported offshore summer chlorophyll a 

versus spring TP relationship distinctly underestimates the summer phytoplankton levels in the 

western Lake Erie basin. 
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1-Dimensional Central Basin Hypoxia Model: The 1D-CBH model comprises a simple 

eutrophication model coupled with a 1-D thermal model that provides temperature and associated 

vertical mixing profiles in the offshore waters of Lake Erie central basin (Rucinski et al., 2010; 

2014). The 1‐D thermal model is based on the Princeton Ocean Model, which uses a Mellor‐

Yamada turbulence closure scheme to parameterize vertical mixing (Mellor and Yamada, 1982) 

and has been modified with an overland‐overlake correction (Beletsky and Schwab, 2001). The 

eutrophication model explicitly simulates organic carbon, phytoplankton, zooplankton, and 

dissolved oxygen, while phosphorus is divided into two pools, i.e., available and unavailable (or 

particulate) P. The model is forced with carbon and phosphorus loading from both western and 

central basins, with the former loads routed to the central basin after accounting for a constant net 

apparent settling loss of 10 m·yr-1 (Lesht et al., 1991). Both hydrodynamic and eutrophication 

models operate with the same vertical resolution, i.e., 48 vertical layers (each 0.5 m thick). The 

model has been tested against 19 years (1987–2005) of observed loading rates and meteorological 

conditions, with the focal question being the relative contribution of thermal stratification 

conditions versus P loading magnitude and timing on the severity of hypoxia in the central Lake 

Erie Basin. Because the model does not include ice-formation processes, the hydrodynamic and 

eutrophication models were initialized each year, using the earliest cruise sample concentration, 

and thus each year is simulated separately, as opposed to a continuous 19-year simulation.  

The 1D-CBH model displayed excellent ability to capture the temporal evolution of the 

observed vertical temperature profiles (Rucinski et al., 2010), including the onset of stratification 

and thermocline development in summer. Maximum model error varied with depth, 1.9 oC and 3.4 

oC for 1994 and 2005, while the overall RE was lower than 5%. Nonetheless, the 1D-CBH tended 

to underestimate the sudden mixed layer depth increase in late August and early September caused 

by storms, as well as to the effects of horizontal advection and internal wave propagation that could 

not be reproduced by a 1D model (Ruchinski et al., 2010). Dissolved oxygen was also reproduced 

fairly well, i.e., RE≈25%, MEF≈0.46), but the capacity to reproduce biological (phyto- or 

zooplankton) components, and other closely-related variables (DRP) is limited, i.e., RE>50%, 

MEF<0 (Ruchinski et al., 2014; Ruchinski et al., 2016). Overall, the model was suggestive that 

within the range of load seasonality observed from 1987 to 2005, the hypoxic response is far more 

dependent on stratification structure (i.e., early or prolonged stratification, deep thermocline) than 

on the timing of nutrient delivery into the system. The model consistently predicted that sediment 

oxygen demand (SOD) represents a substantial fraction of the overall oxygen demand. Nonetheless, 
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it is important to understand that the SOD-versus-TP loading (rectangular hyperbola or simply a 

Michaelis-Menten-type) equation used represents a convenient means to run loading scenarios and 

directly evaluate the changes in water quality variables, but does not offer any mechanistic insights 

about the actual response of the sediment diagenesis processes nor does it have solid empirical 

foundation. After all, the precursor of that equation from Borsuk et al. (2001) was based on cross-

sectional data from 34 estuarine and coastal systems worldwide, with the majority of those bearing 

little resemblance to Lake Erie (see Table 1 in Borsuk et al., 2001).  

Ecological Model of Lake Erie: EcoLE is based on the two‐dimensional hydrodynamic and 

water quality model CE‐QUAL‐W2 (version 2.0), which was originally developed to simulate long 

and narrow waterbodies displaying longitudinal and vertical water quality gradients and lateral 

homogeneity (Cole and Wells, 2006; Zhang et al., 2008). EcoLE divided Lake Erie into 1 m 

vertical layers (maximum number 65 vertical layers) and 222 longitudinal segments from west to 

east. The model has six variables for hydrodynamic simulations: horizontal velocity, vertical 

velocity, free water surface elevation, pressure, density, and constituent concentration. The vertical 

eddy coefficient algorithm has also been modified to adjust the strength of seiches and improve 

the simulations of longitudinal currents in a large, wind-driven Lake Erie (Boegman et al., 2001). 

The ecological model includes 28 state variables, with flexibility to include more water quality 

variables (Cole and Wells, 2006). Phytoplankton was divided into non‐diatom edible algae, non‐

diatom inedible algae, and diatoms, while zooplankton comprised cladocerans and four copepod 

variables (copepod eggs, nauplii, copepodites and copepods); the latter component was based on 

the stage-structured population model originally presented by Fennel and Neumann (2003). The 

ecological implications of dreissenids were considered by two processes: grazing on 

phytoplankton and nutrient recycling via excretion (Zhang et al., 2008). Both their clearance rate 

and excretion rates (N and P) were linked to the dreissenid population size per segment, which in 

turn was described as a function of depth-dependent density and sediment area (Jarvis et al., 2000), 

and basin-specific length-mass regressions (Zhang et al., 2008). 

The hydrodynamics of the model were calibrated against the water levels, currents, and 

temperature data during the growing season (May-September) from 1994 (Boegman et al., 2001). 

The water quality module was subsequently calibrated using phytoplankton and nutrient 

concentration data from 1994 and 1997 (Boegman et al., 2008; Zhang et al., 2008), and 

subsequently validated against data from 1998 and 1999 (Zhang et al., 2008). The latter skill 

assessment exercise was mainly intended to evaluate the ability to capture the longitudinal patterns 
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in Lake Erie, while the temporal variability was phased out by using seasonally averaged field 

measurements. The goodness-of-fit statistics showed that the model could not accurately 

reproduce the longitudinal variability in the system with RE varying from 30% to 120% and MEF 

values that were almost consistently negative. That is, EcoLE displayed inferior performance 

relative to the simple use of a lake-wide average value for each variable included in the calibration 

dataset (Zhang et al., 2008). Nonetheless, a recent model assessment against a snapshot of the 

vertical profiles for water temperature, DO, and chlorophyll a from the summer of 2008 provided 

more encouraging results, although some parameters (maximum sediment DO demand along with 

the associated half saturation, a coefficient in the cloud cover function) had to be readjusted in 

order to improve the representation of the vertical distribution of the water temperature and DO in 

the central basin (Scavia et al., 2016b). A key feature of the process characterization from EcoLE 

is that algal growth relies on P recycling within the upper water column, including crustacean 

excretion, organic matter decay, dreissenid mussel population excretion rates, while phosphorus 

release from the sediments occurred mainly in the central basin, when hypoxic conditions prevail. 

Similar to 1D-CBH, the latter prediction is based on a simple engineering approach (user-specified 

sediment release rates) that does little in shedding light on the diagenesis process, nutrient retention 

time in the sediments, and their potential response to reduced sedimentation fluxes of 

autochthonous material (Scavia et al., 2016b). 

Western Lake Erie Ecosystem Model: WLEEM was introduced by Verhamme et al. (2016) 

as a three-dimensional (3D), fine-scale modelling framework, developed to simulate water quality 

responses to changes in the meteorological conditions and discharges of nutrients and sediments 

from tributaries into the western basin Lake Erie. WLEEM comprises four process-based models: 

(i) EFDC (Environmental Fluid Dynamics Code), which is a 3D Finite difference hydrodynamic 

thermodynamic model, originary developed by Hamrick (1992), providing water level and velocity 

as forcing functions for SWAN, and current direction and velocity as forcing functions for 

SEDTRAN. (ii) SWAN (Simulating WAves Nearshore), which simulates wave conditions based on 

wind, depth, frictions, and velocity. This submodel linked to the EFCD (input) and SEDTRAN 

(output) to provide wave forcing for circulation (i.e., wave height, period, and direction) and 

support the simulation of wind-driven resuspension. (iii) SEDTRSN (Sediment Transport Model), 

which is a 3D sediment transport model developed based on SEDZLJ model by Jones and Lick 

(2001). This submodel offers flexible simulation options that provide sediment settling/deposition, 

resuspension/erosion, bed armoring, and 3D transport of multiple cohesive and non-cohesive 
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sediment classes. (iv) A2EM (Advanced Aquatic Ecosystem Model). The original modeling 

framework was developed for the Upper Mississippi River system by HydroQual, Inc. in the late 

1990s (LimnoTech, 2009) and the same model was revised to add a finer representation of the 

plankton community to simulate their seasonal successional patterns. The water quality model 

A2EM was developed on a publicly available version of Row-Column AESOP (RCA) model code 

(Limnotech, 2010; 2013) that simulates carbon, nitrogen, phosphorus, and oxygen cycles. The 

model has the capacity to simulate five phytoplankton functional groups, three zooplankton 

functional groups, two dreissenid mussel size-based classes, and benthic algae (i.e., Cladophora) 

(Verhamme et al., 2016). The seasonal dynamics of only three major phytoplankton functional 

groups (i.e., diatoms or winter algal assemblage, green algae or summer algal assemblage, and 

cyanobacteria) were considered by Verhamme et al. (2016). 

WLEEM was calibrated using monitoring data from March to November 2011 – 2013, 

which represent a wide range of environmental conditions in Lake Erie with both high and low 

flow, nutrient loads, wind patterns, and significant variability of nutrient concentration and algal 

biomass (Verhamme et al., 2016). Model calibration first focused on physical (hydrodynamics, 

temperature, suspended solids), followed by chemical (TP and SRP, nitrogen species) system 

components. The calibration of phytoplankton state variables revolved around the timing and peak 

magnitude of the simulated functional groups; namely, diatoms, greens, and cyanobacteria during 

spring, early summer, and middle to later summer, respectively. WLEEM successfully reproduced 

the temperature variability (RE<5% and MEF>0.830), and less so the ambient TP levels 

(43%<RE<53% and -0.949<MEF<0.067) in response to high-flow, spring-loading events, with 

concentrations being attenuated (diluted) with distance from the Maumee River mouth (Shimoda 

et al., 2018). SRP (53%<RE<75% and -0.054<MEF<0.448) and NO2+NO3 (32%<RE<41% and 

0.351<MEF<0.726) concentrations were also reproduced reasonably well. Because of the limited 

data availability, the processes underlying the onset of spring (March–May) bloom were not 

adequately characterized. The model also tends to initiate HAB development earlier than the 

monitoring data suggest by approximately four weeks. Model performance against cyanobacteria 

(96%<RE<106% and -0.302 <MEF<0.097) was distinctly worse relative to chlorophyll a 

concentrations (58%<RE<71% and -0.315 <MEF<0.025). 

Estuary and Lake Computer Model-Computational Aquatic Ecosystem Dynamics Model: 

ELCOM-CAEDYM is a coupled 3D hydrodynamic (ELCOM) and biological (CAEDYM) model, 

and is considered one of the most commonly used models worldwide. ELCOM on its own has been 
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used to examine the response of the thermal structure (Liu et al., 2014) and circulation patterns 

(Leon et al., 2012) in Lake Erie to changes in meteorological conditions (e.g., air temperature, 

wind speed). The same model has also been used to simulate 3D transport of organic materials/ 

organisms, such as walleye larvae floating near the lake surface (Zhao et al., 2009). During its 

initial application, ELCOM has been calibrated to vertical temperature profile and data from 1994 

for all basins, and subsequently against data from 2001-2003 in the eastern basin (Leon et al., 

2005). Most recent simulations of the water temperature patterns displayed very satisfactory 

performance, i.e., RE<10% and MEF>0.780 (Bocaniov et al., 2014, Oveisy et al., 2014 Bocaniov 

et al., 2016, Bocaniov and Scavia, 2016). 

The existing ELCOM-CAEDYM applications in Lake Erie opted for simpler ecological 

structure than its built-in capacity. Specifically, CAEDYM has a total of 112 state variables that 

consider water, sediment, chemical, biological processes, and can simulate up to 7 phytoplankton 

functional groups (PFGs), 5 zooplankton functional groups (ZFGs), 6 fish groups, 4 macroalgal 

groups, 3 invertebrate groups, 3 mussel classes, macrophytes, seagrass, jellyfish (Hipsey and 

Hamilton, 2008). The application of ELCOM-CAEDYM to Lake Erie is limited to five 

phytoplankton groups (i.e., early bloom diatoms, lake bloom diatoms, cyanophytes, cooler and 

deeper water flagellate and warmer and brighter water flagellates) (Leon et al., 2011; Bocaniov et 

al., 2014; 2016). State variables that represent zooplankton have never been activated with 

ELCOM-CAEDYM applications in Lake Erie, and thus the role of zooplankton has been 

accommodated solely by the increased grazing-induced losses of phytoplankton (Leon et al., 2011; 

Bocaniov et al., 2014; 2016). A novel feature of ELCOM-CAEDYM in Lake Erie is the explicit 

representation of dreissenids dynamics. The built-in dreissenid sub-model was developed based 

on a clam model for a temperate estuarine lagoon (Spillman et al., 2008). Dreissenid biomass 

density is modulated by grazing (on phytoplankton and detrital particle) and respiration, excretion, 

egestion, and mortality losses (Bocaniov et al., 2014). Nutrient release from the sediments and ice 

formation modules are also incorporated to ELCOM-CAEDYM. Both modules have been used to 

consider the role of sediments on the elevated TP in the northeastern nearshore zone (Leon et al., 

2011), as well as to evaluate the effects of ice cover on winter productivity and subsequent hypoxia 

development (Oveisy et al., 2012). 

ELCOM-CAEDYM was calibrated against DO observations (Leon et al., 2006). Another 

version with additional submodules (i.e., PFGs, dreissenids, and ice-cover) has been also 

recalibrated against temperature, chlorophyll a, light attenuation, and nutrient concentration data 
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from 2002 (Leon et al., 2011; Bocaniov et al., 2014) and temperature, DO, ice-cover and thickness 

from the 2004-2005 winter period (October-April) data (Oveisy et al., 2014). The most recent 

studies (i.e., Bocaniov et al., 2016; Bocaniov and Scavia, 2016, Karatayev et al., 2017) improved 

the external forcing functions with finer resolution meteorological data and more comprehensive 

discharges from tributaries. The simulated thermal structure was validated against USEPA cruise 

data from 2008, satellite-derived, lake-wide surface observations (Bocaniov and Scavia, 2016), 

and DO, chlorophyll a, nutrient concentrations from two basin-wide cruises occurred in 2008 

(Bocaniov et al., 2016). With the most recent studies, the reproduction of chlorophyll a 

concentrations was generally satisfactory with the skill assessment by Bocaniov et al. (2014), 

18%<RE<42% and -0.467 <MEF<0.868, and less so with the one presented by Valipour et al. 

(2016), 64%<RE<88% and -3.081 <MEF<0.250. 

Eastern Basin Cladophora Model: The EBC model is a simple mechanistic model aiming 

to predict Cladophora standing biomass and P stored in plant tissues (Auer et al., 2010). The 

original framework to simulate Cladophora growth/biomass developed by Canale and Auer (1982) 

has been modified by several authors (Higgins et al., 2005, 2006; Tomlinson et al., 2010; Auer et 

al., 2010), which generally focused on refinements of three terms: growth, loss by respiration and 

sloughing. The growth rate of Cladophora is expressed as a function of the maximum gross 

specific growth rate and limitation multipliers that account for the role of light, temperature, 

internal P, and maximum biomass density (carrying capacity). The respiration rate considers both 

a dark/basal rate that varies only with temperature as well as a light-enhanced rate determined by 

temperature and light intensity (Tomlinson et al., 2010). In its updated version, sloughing is 

modelled as a first-order loss process with the rate coefficient varying as a function of water 

temperature and the depth of colonization, which in turn reflects the effect of wind energy (i.e., 

momentum leading to detachment) and benthic shear stress effect. The physiological effects of 

temperature initiate with a minimum temperature until an optimum temperature level is reached at 

and above which the sloughing rate is at its maximum value (Tomlinson et al., 2010). In a recent 

study, Valipour et al (2016) incorporated EBC with ELCOM-CAEDYM in order to investigate the 

interplay among external phosphorus loading, nearshore phosphorus, and Cladophora growth. The 

introduction of EBC into a 3D hydrodynamic environment intended to shed light on both nearshore 

and basin-scale physical factors, such as wind, surface runoff, degree of stratification, upwelling 

events (period of 5–10 days), seiches (~14 h), and near-inertial waves (~17 h) that shape offshore-

nearshore exchanges. Upwelling events during the months of May-early July appear to be the 
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predominant drivers of offshore-nearshore mass exchanges, whereby SRP is injected from the 

hypolimnion into the nearshore northeastern Lake Erie; especially since these events usually 

coincide with optimal light and water temperature conditions (Valipour et al., 2016). 

Considering the limited empirical information, EBC displayed the skill to reproduce 

Cladophora biomass along the shallow areas of the eastern Lake Erie basin (<10m), but its 

performance declined at the deeper zone may be due to the inadequate parameterization of the 

sloughing mechanisms (Tomlinson et al., 2010). Our independent assessment of the goodness-of-

fit against Cladophora biomass data showed that MEF varied considerably between -0.705-0.708 

(Shimoda et al., 2018), while the median RE of all the “observed-versus-predicted” comparisons 

presented in the literature was larger than 60% (Fig. 5). In a similar manner, the corresponding 

values for the P tissue content varied from -2.795 to -0.016 (Shimoda et al., 2018). Except from 

our limited understanding of the drivers underlying the sloughing processes, some of the identified 

weakness include the lack of a comprehensive SRP database for nearshore habitat colonized by 

Cladophora, which inevitably leads to a reliance upon measurements from offshore sites or at 

water intakes located at depths often beyond the domain of colonization (Auer et al., 2010). 

Moreover, there is no empirical evidence of Cladophora biomass levels immediately prior to the 

dreissenid invasion, and thus there is no direct way to reconcile their role on Cladophora 

“resurgence” in Lake Erie (Higgins et al., 2005). In addition, the internal phosphorus is rarely 

measured in natural populations, and the values used typically span a wide range (Auer and Canale, 

1982; Jackson and Hamdy, 1982; Higgins et al., 2005; Malkin et al., 2008; Thomlinson et al., 

2010). Except from the lack of data, there also seems to be some inconsistency with respect to the 
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sampling/analytical protocols followed during the determination of Cladophora biomass used to 

constrain the existing models.  

  

Figure 5: Model performance for different physical, chemical, and biological components of Lake Erie. The relative 

error for each state variable is based on the median value of all the corresponding graphs published in the peer-

reviewed literature, in which field data were compared against simulated values. Counter to the practices followed in 

Scavia et al. (2016a,b), our goodness-of-fit assessment was based on point comparisons in time and space instead of 

aggregated (seasonal/annual, basin- or lake-wide) scales. 
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4 Lessons Learned from the Lake Erie Modelling Framework 

4.1 SWAT-based Ensemble Strategy: Delineation of “Hot-Spots” in the Maumee River 

Watershed and Analysis of BMP Scenarios.  

Following the development of a spatially distributed model, the identification of high-risk 

areas (or “hot-spots”) with greater propensity for nutrient export and downstream delivery rates is 

an important exercise (Scavia et al., 2016c). In the Maumee River watershed, given that the 

calibration of all five SWAT applications was based on a single downstream station without any 

spatial information used to constrain the underlying processes, the (dis)agreement among the 

corresponding delineations could be primarily determined by two factors: (i) the discrepancies 

among the assumptions made or input data used during the spatial configuration (e.g., tile drainage, 

fertilizer/manure application rates, land use/land cover or LULC data) of the individual models; 

and (ii) the differences in the characterization of processes pertaining to the water and nutrient 

cycles. The accommodation of the latter source of uncertainty, i.e., the inability to unequivocally 

quantify the relative importance of major hydrological and nutrient transport/transformation 

mechanisms, is one of the main benefits of the SWAT-ensemble strategy in the Maumee River 

watershed. By contrast, the errors arising from the mischaracterization of boundary conditions and 

forcing functions (e.g., fertilizer application rates, agricultural tile drainage network) among the 

ensemble members represent “nuisance” factors that inflate the uncertainty of the predictions 

drawn without necessarily advancing our understanding of the watershed functioning or shedding 

light on the critical processes for achieving our environmental goals (Kim et al., 2018a).  

Bearing these two major sources of uncertainty in mind, Scavia et al. (2016c) showed an 

agreement among the models in identifying higher TP loading rates from the northwestern and 

southern parts of the Maumee River watershed, whereas a tendency for higher dissolved reactive 

phosphorus (DRP) export rates was mainly projected on the predominantly agricultural central 

area (Fig. S1). Considering that a significant amount of DRP (45-60%) can be exported to rivers 

through agricultural tile drainage (Xue et al., 1998; Kovacic et al., 2000), this disconnect between 

TP and DRP loading is likely associated with the tile-drainage assumptions made during the spatial 

configuration of the five models. In particular, Kim et al. (2018a) showed that considerable 

variability exists among the individual estimates for surface runoff and tile flow (subsurface 

runoff), i.e., 191~275 mm and 50~139 mm, even though the total runoff (calculated as the sum of 

surface and tile flow, excluding groundwater) was fairly similar (301~334 mm) across the five 
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SWAT models (see Fig. 3 in Kim et al., 2018a). In the same context though, the differences in the 

spatial distribution of the tile-drainage among the models in conjunction with the fairly similar 

“hot-spot” mapping for a given phosphorus form (Fig. S1) may be an evidence of a retrofitting of 

the phosphorus-related parameters that counterbalances the differences in the simulated hydrology 

(see Table 2 in Kim et al., 2018a). For example, the OSU model, based on a parameter specification 

that postulated low tile flow and high mineralization rates, predicted similar DRP loading patterns 

in the south-central Maumee River watershed with the TAMU model, in which high tile flow was 

combined with low P mineralization rates (Kim et al., 2018). Given the latter evidence along with 

the fact that the calibration of all the models was based on a single downstream station, it can be 

inferred that the capacity of the current SWAT ensemble to pinpoint nutrient-export hot-spots is 

uncertain and may simply be the result of multiple errors that cancel each other out and ultimately 

lead to the same output. It is thus critical to mitigate the confounding effects of the nuisance factors 

of the current watershed modelling framework by improving and/or sharing identical input data 

(e.g., fertilizer application rates, LULC data, and agricultural tile drainage network). In doing so, 

we will establish a common denominator across all of the SWAT applications upon which the 

implications of other critical sources of uncertainty will be examined. 

As previously mentioned, notwithstanding the fact that the uncertainty envelope derived 

from an ensemble strategy is potentially inflated by factors not directly related to the watershed 

response to alternative BMP scenarios, there are still compelling arguments in favor of their use 

for guiding environmental policy decisions (Scavia et al., 2016; 2017). In the Maumee River 

watershed, ten land-use management scenarios were designed after considering issues related to 

their practical implementation and policy feasibility, i.e., commonly applied (fertilizer reduction, 

tillage replacement) versus less frequent management practices (land-use conversions, 

wetland/buffer restoration); the ability of SWAT to examine certain agricultural activities; and 

extensive consultation with agricultural and conservation stakeholders (Scavia et al., 2016; 2017; 

see also details in Table S1). Overall, little evidence was provided regarding the likelihood to 

achieve the March-July phosphorus loading targets of 186 metric tonnes of DRP and 860 metric 

tonnes of TP (GLWQA, 2016), or 40% reduction from the 2008 loads, across the different BMP 

scenarios examined (Figs. S2a,b). Interestingly, the attainability of the TP loading threshold seems 

to be more likely relative to the one for DRP loading. It is also worth noting that the forecasts 

associated with commonly applied BMP scenarios (S1-S4) were somewhat more conservative, in 

comparison with scenarios that are less frequently applied (S5 and S9) (Figs S2a,b; see also 
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discussion in Kim et al., 2018a). Moreover, the degree of divergence of the individual model 

forecasts for the various BMP scenarios examined (or the forecasting spread) offered insights that 

can meaningfully influence the environmental policy analysis process. In particular, the 

forecasting spread increases significantly with the degree of deviation of BMP scenarios from the 

present conditions (Figs S2c,d). The existing SWAT applications suggest that for every 50 metric 

tonnes of reduction achieved the standardized forecasting spread, or the deviation of the five 

models divided by their corresponding averaged prediction for a given scenario, increases by 1.5% 

and 13% for TP and DRP, respectively (see linear regression equations in Figs S2c,d). To put it 

another way, the same scatterplots suggest that the standardized forecasting spread with the 

existing loading targets of 860 tonnes for TP and 186 tonnes for DRP is 26% and 33%, respectively.  

The likelihood of a moderate reduction of DRP loading with nearly all the different 

management practices examined is consistent with recent empirical and modelling evidence from 

the Lake Erie watershed (Daloglu et al., 2016; King et al., 2017; Baker et al., 2017). In particular, 

the increasing DRP loading trend after the mid-1990s has been attributed to the increased 

frequency of storm events, suboptimal fertilizer application rates and timing, and management 

practices that appear to increase phosphorus accumulation at the soil surface (Daloglu et al., 2016). 

Counter to the (nearly) monotonic decline of the amount of nitrate in soils, which exhibited 

significant vertical mobility and was distinctly flushed out of the watershed after rainfall events, 

DRP appears to display a remarkable persistence across a wide range of spatial scales (King et al., 

2017). The latter pattern highlights the role of legacy P as an important regulatory factor of the 

DRP concentration in soils. In particular, historical P fertilizer application rates seem to have led 

to soil reserves well-above critical levels in the area (Powers et al., 2016), which allowed to 

maintain high crop yields even after P fertilizer implementation declined (Dodd et al., 2013; Liu 

et al., 2015; McDowell et al., 2016). P build-up is hypothesized to have triggered a rapid, 

microbially mediated transformation of labile to bioavailable pools that are more susceptible to 

losses (King et al., 2017). If the latter mechanism holds true, then surface fertilizer applications 

could exacerbate soil P stratification. While this possibility casts doubt on the management 

practices designed to reduce top-soil P levels, the periodic soil inversion tillage to thoroughly mix 

the soil in the plow layer is recommended as the best strategy to avoid stratification increments 

(Baker et al., 2017). Moreover, alongside the buildup of legacy labile P fractions at the soil surface, 

recent research suggests the establishment of macropore flow pathways and increased tile drainage 

facilitate the hydrological connectivity and ultimately transport of soluble P among soil surface, 
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subsurface drainage, and stream network (Sharpley et al., 2011; Jarvie et al., 2017). Given this 

emerging evidence, one challenging aspect for the evaluation of scenarios with the SWAT-

ensemble is the proper consideration of legacy P (e.g., initialization that accommodates the spatial 

soil P variability, sufficient model spin-up period, parameter specification that reproduces the 

gradual P accumulation in the soils) and its ability to reproduce the critical hydrological and 

transformation mechanisms modulating the DRP loading in the Lake Erie basin.  

4.2 Lake Erie Multi-Model Ensemble Strategy: Distinguishing Between Predictable 

Patterns and Sources of Uncertainty with the Load-Response Curves. 

In this section, we critically evaluate the credibility of the Scavia et al. (2016a,b) forecasts 

on the achievability of the four ERIs, after forcing the Lake Erie multi-model ensemble with a 

series of nutrient loading reduction scenarios. To impartially conduct this analysis, we believe that 

these predictive statements cannot be viewed independently from the technical features of each of 

the modelling tools used, the characterization of the fundamental ecological processes modelled, 

and the ecological insights gained. In the same context, it is important to note that there is no 

consistent information from the individual members of the model ensemble regarding the 

quantification of all the fluxes pertaining to modelled biogeochemical cycles (carbon, nitrogen, 

phosphorus, oxygen), and therefore it is difficult to evaluate the relative significance of critical 

ecological pathways (e.g., internal loading, importance of bacterial-mediated nutrient regeneration 

or nutrient excreta/egesta from zooplankton/dreissenids, seasonality of sedimentation fluxes) that 

can conceivably modulate the projected response of Lake Erie to exogenous nutrient loading 

reduction. In the next iteration of the modelling framework, we thus highlight the need to report 

for each ensemble member the resulting quantitative description of the simulated biogeochemical 

cycles (see Fig. 7 in Kim et al., 2013 or Fig. 4 in Gudimov et al., 2015), which in turn will not only 

provide an essential piece of information to put the derived ecological forecasts into perspective, 

but will also allow to understand how distinctly different are the characterizations of the ecosystem 

functioning and consequently the degree of “diversity” of the modelling tools at hand. We should 

always bear in mind that the actual benefits of using multiple models do not stem from the 

complexity of the mathematics per se, but rather the ability to test alternative ecosystem 

conceptualizations or competing hypotheses regarding the role of certain facets of the underlying 

biogeochemistry. 

4.2.1. Basin-specific overall phytoplankton biomass represented by summer average 

chlorophyll-a concentrations: Existing evidence from the international peer-reviewed literature 
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suggests that the current generation of process-based models has satisfactory ability to reproduce 

the observed patterns of total phytoplankton biomass in a wide variety of aquatic systems and 

trophic conditions (Arhonditsis and Brett, 2004; Shimoda and Arhonditsis, 2016). Chlorophyll a 

as a bulk estimate of the total phytoplankton biomass across all the functional groups is a 

commonly used criterion to assess the trophic status of lakes. Lake Erie historically exhibits the 

highest lake-wide chlorophyll a concentrations with a distinct longitudinal west-east gradient (Cai 

and Reavie, 2018). Oligotrophic conditions prevail in the offshore waters of the central and eastern 

basins, rarely exceeding an average summer chlorophyll a concentration of 2.5 μg Chl a L-1 over 

the last three decades (Dove and Chapra, 2015). On the contrary, seasonal average chlorophyll a 

levels in western basin often exceed the mesotrophic levels with the highest concentrations 

typically experienced during early fall (Zolfaghari and Duguay, 2016). Hence, the focus of the 

analysis of nutrient loading reduction scenarios and the development of load-response curves was 

on the western basin (Scavia et al., 2016a,b). The models used for the latter exercise were very 

diverse, including an empirical model coupled with TPBM and three complex process-based 

models (EcoLE, WLEEM, and ELCOM-CAEDYM) (Scavia et al., 2016a,b). The load-response 

curves produced from the four models displayed distinct differences in the predicted trajectories 

of the system. For example, Scavia et al. (2016b) noted that the annual TP loads into the western 

basin needed to bring about a 50% decrease in the maximum chlorophyll a concentration ranged 

between 1,130 MT and 3,010 MT (Fig. S3a). The substantial uncertainty band raises the question 

to what extent it stems from the diversity of the models used and their conceptual/structural 

differences in terms of the suite of ecological drivers considered (i.e., the “desirable” variability 

that a model ensemble aims to accommodate) or from mischaracterizations of the system ecology 

and their individual biases that unnecessarily inflate the uncertainty of the model ensemble.     

One of the members of the Lake Erie ensemble was based on a chlorophyll a vs TP 

exponential regression model derived by data pooled from all of the Great Lakes (Dove and Chapra, 

2015). As previously mentioned, this empirical equation apparently underestimates the summer 

phytoplankton levels in the western Lake Erie basin, which likely stems from several lower-end 

(Lakes Huron and Michigan), and mid-range (central and eastern Lake Erie) observations that 

shape its intercept and slope, respectively (see Fig. 11 in Dove and Chapra, 2015). Building 

regression models from cross-sectional data is not an unusual practice in limnology, and this bias 

can be easily rectified by formulating a hierarchical structure that relaxes the assumption of 

globally common parameters and allows estimating system-specific regression coefficients 
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(Cheng et al., 2010). It is also important to consider other predictors that could conceivably 

influence the levels of total phytoplankton biomass, given that the existing regression model 

explained less than 60% of the observed variability. We emphasize that it is essential to include 

and suitably update (at least) one data-driven model per ERI considered, as their empirical 

foundation offers a distinct alternative to the “growth-minus-loss” mass balance strategy 

characterizing the phytoplankton governing equation of process-based models.        

The phytoplankton growth terms of EcoLE and ELCOM-CAEDYM bear conceptual 

resemblance in that they both explicitly consider the limitations posed from temperature, whereas 

all the other potentially limiting factors (e.g., light, nutrients) are included within the minimum 

formula of the Liebig's Law and thus only one of those actively limits algal growth in a given time 

step. Regarding the plausibility of this strategy, Kim et al. (2014) argued that likely overstates the 

role of light availability as the predominant factor of the bottom-up forcing in the system, given 

that the low values assigned to half-saturation constants for phosphate uptake could be reducing 

the severity of phosphorus limitation in the summer. Counter to this assertion though, Zhang et al. 

(2016) showed that EcoLE simulations are suggestive of years (1997) when phosphorus is the sole 

limiting factor, even under the present (baseline) conditions, and other years (1998) when light 

and phosphorus interchangeably determine the degree of algal growth limitation during the 

summer period (see Fig. 11 in Zhang et al., 2016). According to forecasts drawn from EcoLE, it is 

also important to note that the initial benefits (i.e., decrease of total phytoplankton biomass) from 

the implemented nutrient loading reduction will emerge from the residents of the summer algal 

assemblage that possess inferior kinetics for P uptake (i.e., their non-diatom inedible algal group), 

whereas other species/superior P competitors (diatom-like or non-diatom edible algae) will display 

minimal decline (if not increase) because the severity of P limitation will be offset by the resulting 

improvement in the light environment (Zhang et al., 2016). The same pattern of a moderate 

response at the initial stages of loading reduction becomes more evident with the WLEEM load-

response curve (see pages 14-15 in Scavia et al., 2016b), as the likelihood of a counterbalancing 

effect between P and light limitation carries more weight with the corresponding simulations, 

given that light availability is treated as an independent limiting factor (Verhamme et al., 2016). 

By contrast, the ELCOM-CAEDYM load-response curve is less steep than the rest of the models 

considered, even though the mathematics of the phytoplankton growth limitation term are fairly 

similar to EcoLE. One plausible explanation could be that P limitation with this model is based on 

a two-pronged process that first considers the nutrient uptake rate in relation to the ambient 
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nutrients and subsequently the growth rate as a function of their internal nutrient storage. The latter 

strategy postulates that the intracellular P pool buffers the phytoplankton response to nutrient 

variability. Although we cannot unequivocally pinpoint which of the three representations of the 

same process (phytoplankton growth) is the “correct” one for Lake Erie, we believe that this is an 

excellent example of how multiple competing models can capture an influential source of 

uncertainty.  

The characterization of the rest of the algal processes (respiration, excretion, senescence 

mortality, sedimentation rate) was fairly similar, and therefore their influence on the uncertainty 

of the load-response curves must have been negligible. One distinct structural difference among 

the mechanistic models was that only EcoLE explicitly considered the importance of zooplankton 

dynamics in Lake Erie. The limited consideration of the role of zooplankton is somewhat 

surprising, given the general attention to the mechanisms underlying the strength of trophic 

coupling in planktonic food webs and the local work on its diurnal and seasonal adaptive behavior 

to overcome the hypolimnetic hypoxia (Vanderploeg et al., 2009). In its place, the existing 

modelling work focused on the role of dreissenids as the primary factor modulating phytoplankton 

abundance and composition, which likely holds true in the nearshore zone (Boegman et al., 2008; 

Zhang et al., 2008). However, improvement of zooplankton representation in the next iteration of 

Lake Erie modelling is important not only because it will allow to more effectively account for the 

likelihood of top-down control in offshore waters, but will also shed light on the broader 

implications of empirical evidence that certain residents (microzooplankton) of the zooplankton 

assemblage are more resilient than others (mesozooplankton) to toxic cyanobacterial blooms 

(Davis et al., 2012). In particular, an emerging hypothesis is that microzooplankton communities 

display a greater potential to serve as a top-down regulatory factor of toxic cyanobacterial blooms, 

whereas the inhibition of the mesozooplankton grazing rates by unpalatable algae could decrease 

the efficiency of carbon transfer and thus the upper trophic level productivity (Davis et al., 2012). 

Expect from the planktonic processes, another significant driver of the trajectories 

predicted from the different models may be the postulated reliance of phytoplankton growth upon 

internal nutrient sources, which in turn can modulate the projected impact of external nutrient 

loading variability on standing algal biomass (Gudimov et al., 2011). Namely, a comparison of the 

intercepts of the load-response curves from the three mechanistic models, either as a scaled (%) 

phytoplankton response to its maximum (Fig. S3a) or as an actual chlorophyll a concentration (see 

graphs in pages 14 and 15 of Scavia 2016b), is indicative of distinct differences in the predicted 



Page | 40  

 

levels of standing phytoplankton biomass in the western Lake Erie, even when external loading is 

practically eliminated (ELCOM-CAEDYM versus EcoLE or WLEEM). One possible reason could 

be the mineralization of organic compounds by heterotrophic zooplankton and microbes, which 

represent a major nutrient source to fuel phytoplankton production during the period of summer 

stratification and low ambient nutrient availability in the pelagic zone (Vanni, 2002; Teubner et 

al., 2003; Kamarainen et al., 2009; Ramin et al., 2012b). Earlier work from Goldman (1984) has 

described the intense microbially mediated regeneration as a rapidly turning “spinning wheel” by 

which nutrients are returned into the water column in short time scales (<1 day) with minimal 

losses. There is abundant evidence from a wide range of morphologically and geographically 

diverse lakes that the excretion of inorganic phosphorus by zooplankton can potentially account 

for a significant fraction of the phytoplankton demands (Gulati et al., 1995; Arhonditsis et al., 2004; 

Conroy et al., 2005; Kowalezewska-Madura et al., 2007). EcoLE was the only member of the 

model ensemble that explicitly considered the importance of this mechanism, suggesting that 

crustacean excretion may provide between 20-25% of the algal uptake (Boegman et al., 2008; 

Zhang et al., 2016). In the same context, dreissenid excreted/egested material could represent 

another major internal source of P, and existing empirical and modelling evidence suggests that 

its contribution could be responsible for a significant fraction (15-30%) of the phytoplankton 

uptake in the western Lake Erie, especially when external loads are low (Mellina et al., 1995; 

Arnott and Vanni, 1996; Conroy et al., 2005; Zhang et al., 2016). Considering that the importance 

of this source will likely increase with the proliferation of dreissenid mussels in the western basin 

(Karatayev et al., 2014), increasing temperature and/or prolonged stratification (Ramin et al., 

2012b; Johengen et al., 2013), it is critical to quantify the actual role of the corresponding internal 

nutrient fluxes to the overall P budget and revisit the existing models accordingly. Both ELCOM-

CAEDYM and WLEEM have submodels that are specifically designed to accommodate the role of 

dreissenids            

Another important factor that could determine the response of Lake Erie to nutrient 

mitigation strategies is the likelihood of internal loading from the sediments. A recent study by 

Matisoff et al. (2016) attempted to shed light on this issue by obtaining estimates of the P diffusive 

fluxes from bottom sediments throughout the western basin of Lake Erie. A first striking finding 

was that the annual aerobic P flux for the entire a western basin is 378 MT P/year with a 95% 

confidence interval of 359 and 665 MT P/year, which in turn could correspond to anything between 

11-60% of the recommended target loads of 1,130-3,010 MT P/year in order to achieve a 50% 
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reduction in maximum chlorophyll a concentration reported by each model used (see Table 12 in 

Scavia et al., 2016b). In a similar manner, depending on the temperature correction factor used to 

calculate the aerobic P fluxes and under the assumption of complete mixing with an average water 

residence time of 50.7 days, Matisoff et al. (2016) estimated that the sediment contributes between 

3.0 and 6.3 μg L-1 of dissolved P to the water column, which represents 20–42% of the IJC Target 

Concentration of 15 μg P L-1 for the western basin. It is also interesting to note that a recent study 

from the central basin reported P release from the sediments that could be up to 20% of the total 

external input of P to Lake Erie (Paytan et al., 2017). Moreover, Matisoff et al. (2016) found that 

the anaerobic conditions are (on average) 4 to 13 times larger than those under aerobic conditions. 

The greater flux under anaerobic conditions were likely related to microbial reduction of Fe under 

anaerobic conditions, desorption of P into porewater, and subsequent diffusion into the overlying 

waters (Dittrich et al., 2013). While aerobic conditions at the sediment-water interface probably 

dominate redox chemistry in the western basin because of the shallow and mixed environment, the 

anaerobic fluxes may still be relevant since the shallow waters of the western basin can 

occasionally stratify for short time periods of up to 4-5 days and the bottom waters can become 

anaerobic.  

It is thus critical to understand the intensive microbiological, geochemical, and physical 

processes occurring within the top few centimetres of the sediment and determine the fraction of 

organic matter and nutrients released into the overlying water (Table S2). Diagenetic modelling is 

an indispensable tool to investigate the interplay among the sediment processes, to verify concepts, 

and to potentially predict system behaviors (Gudimov et al., 2016; Doan et al., 2018). This kind of 

diagenetic modelling as well as the data that necessitate to ground-truth those models (e.g., 

porewater analysis, phosphorus fractionation, organic matter profiles) are still missing in Lake Erie; 

especially from the central basin. Field, experimental, and modelling work should be designed to 

shed light on the mechanisms of phosphorus mobilization in the sediments and to identify process 

controls under a variety of conditions. Interestingly, although it cannot offer the mechanistic 

insights (e.g., primary and secondary redox reactions, mineral precipitation dissolution reactions, 

acid dissociation reactions, and P binding form reactions) that the new generation of sediment 

diagenetic models can, WLEEM has a potentially useful sediment mass-balance submodel that 

distinguishes between aerobic and anaerobic layers and uses linear partitioning to assign the total 

amount of a nutrient between dissolved and particulate fractions (Verhamme et al., 2016). A 

similar engineering-type approach is also incorporated to ELCOM-CAEDYM (Hipsey, 2008). Both 
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submodels can provide useful tools to dynamically track the response of the sediments under 

different nutrient loading regimes as long as several influential parameters (e.g., burial rates, 

particle mixing velocity among layers, resuspension rates, and aqueous mass transfer coefficients) 

are realistically constrained by empirical information from Lake Erie.  

4.2.2. Cyanobacteria blooms in the western Lake Erie represented by the maximum 30-

day average cyanobacteria biomass: For the purpose of establishing nutrient loading targets for 

this ERI, a 30-day average cyanobacteria biomass metric was selected as a proxy of the severity 

of harmful algal blooms in the western basin. In particular, a threshold of 9,600 MT dry weight 

biomass has been selected to distinguish between “severe” and “mild” blooms (Stumpf et al., 2012), 

based on existing records of satellite-estimated peak 30-day blooms since the early 2000s. Three 

models have been used to draw ecological forecasts and create load-response curves, i.e., 

UM/GLERL Western Basin HAB model, NOAA Western Basin HAB model, and WLEEM (Figs. 

S3b-d), but it should be noted that both ELCOM-CAEDYM and EcoLE consider multiple 

phytoplankton functional groups and could potentially be included in a similar exercise in the 

future. The synthesis of the predictions from two empirical equations and one mechanistic model 

has been somewhat problematic due to the different methods used to determine peak 30-day 

average cyanobacteria biomass. The former models are based on the satellite-derived estimates of 

maximum 30-day average bloom size calculated from consecutive 10-day composite images, 

which are in turn obtained by summing the highest biomass values observed at each pixel over 

each 10-day period (Stumpf et al., 2012), whereas WLEEM derives a maximum 30-day moving 

average from basin-wide daily simulations of cyanobacteria biomass (Verhamme et al., 2016). To 

reconcile this mismatch, a WLEEM prediction of 7,830 MT has been used as the equivalent to the 

satellite-derived bloom size of 9,600 MT.  

Notwithstanding their simplicity and small sample size used for their development, the 

consideration of two empirical models for the assessment of this particular ERI is critical, as 

evidence from the modelling literature provides little support to the ability of the current generation 

of mechanistic models to forecast structural shifts in the composition of phytoplankton 

assemblages and patterns of cyanobacteria dominance (Anderson, 2005; Shimoda and Arhonditsis, 

2016). In particular, a recent meta-analysis of 124 aquatic biogeochemical models found moderate 

fit statistics against empirical cyanobacteria biomass estimates, i.e., n=70, median r2 = 0.36, RE = 

65%, MEF = 0.06 (Shimoda and Arhonditsis, 2016). Of equal importance is the fact that there is 

considerable uncertainty with respect to the characterization of the ecophysiological traits of a 
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“cyanobacteria-like” group, although there is a tendency to be defined as K strategists, displaying 

slower growth and metabolic rates that offer superior competitive skills in environments reaching 

their carrying capacity, with inferior P and superior N kinetics, adaptive capacity to tolerate turbid 

waters with low light availability, aptitude to sink slowly or even to regulate their vertical position 

within the water column in order to exploit favorable micro-environments, and limited preference 

(or even selective rejection) from zooplankton and dreissenids (Shimoda and Arhonditsis, 2016). 

The mechanistic modelling work that is in place in Lake Erie does not deviate from this general 

delineation of cyanobacteria, but there is considerable variability with the actual values assigned 

to the individual ecophysiological parameters (Zhang et al., 2016; Verhamme et al., 2016; 

Bocaniov et al., 2016). The only notable discrepancy from these practices was WLEEM’s 

characterization of cyanobacteria as the fastest growing group of the simulated phytoplankton 

assemblage, which in turn may explain the steep slope (8.37 MT of cyanobacteria biomass per MT 

of spring TP load from the Maumee River) of the corresponding load-response curve (see Fig. 12 

in Verhamme et al., 2016). Overall, the load-response curves of the three members of the model 

ensemble coalesced with respect to their predictions, suggesting that bloom sizes below the 

selected threshold can be achieved with cumulative Maumee March–July loads of 890–1150 MT 

or annual loads of 1679–2170 MT (see Table 2 in Scavia et al., 2016a). The questions arising 

though is do the models converge for the right reasons or better yet what is the degree of our 

confidence on these predictions? 

If the skill assessment is one of the criteria to infer about the credibility of the existing HAB 

process-based modelling work, then our view differs from the practices followed in Lake Erie with 

respect to what constitutes an acceptable model fit or even an appropriate temporal scale to 

evaluate model performance. Namely, Scavia at al. (2016b) reported a -14% percent bias and 38% 

mean absolute relative error for WLEEM, when seasonally averaged cyanobacteria biovolume data 

were compared against the corresponding model outputs across four stations. Although this 

spatially and temporally aggregated assessment was intended to evaluate performance against the 

proposed metric for this ERI, abrupt and non-linear compositional shifts in phytoplankton 

assemblages are the very essence of HABs, and as such their study should be focused on finer time 

scales in order to understand the underlying mechanisms as well as their potential timing or actual 

magnitude. In particular, a careful inspection of the graphs included in Verhamme et al. (2016) 

lends little support to the ability of the model to predict cyanobacteria blooms (see their Fig. 8) 

and the reported goodness-of-fit statistics were clearly inflated from sites that did not exhibit 



Page | 44  

 

significant cyanobacteria biovolume increase (e.g., station GR1) during the study period. In fact, 

our independent assessment of the model fit with daily resolution was suggestive of a RE≈100% 

and MEF<0. Taken together with the substantial residual variability of the two empirical models, 

it can be inferred that the load-response curves for this ERI are surrounded by considerable 

predictive error and the relatively narrow uncertainty bounds are likely misleading.  

Viewed from a heuristic perspective though, the existing cyanobacteria modelling work 

has collectively advanced our understanding of the factors triggering HAB formation. Considering 

that cyanobacteria dominance is largely the outcome of the resource competition among multiple 

phytoplankton species, one important lesson learned from both mechanistic and data-driven 

models was that both the dissolved reactive and particulate fractions of TP load must be taken into 

account when setting HAB-related load targets (Bertani et al., 2016; Verhamme et al., 2016). 

Existing empirical estimates show significant variability of the bioavailable fraction of particulate 

phosphorus (20-45%) in the Maumee River, and several mechanisms (e.g., microbial 

mineralization, anoxic release from the sediments) could potentially determine the bioavailability 

of the inflowing material from the time of entry in early spring until the mid-summer initiation of 

Microcystis blooms (Bridgeman et al., 2006; Loewen et al., 2007; Stow et al., 2015; Ho and 

Michalak, 2015). As previously mentioned, another interesting finding from the modelling work 

in Lake Erie is that its susceptibility to HAB occurrence could be increasing, and this trend could 

be attributed to changing meteorological conditions, such as warmer temperatures and calmer 

summer conditions (Michalak et al., 2013). Nonetheless, the signature of climatic forcing is not 

always evident on the timing and magnitude of HAB occurrence, and therefore a suite of alternative 

mechanisms have been proposed to explain the likelihood of an increase in the frequency of 

cyanobacteria dominance in the summer assemblage of Lake Erie, including the presence of an 

increasing reservoir of Microcystis seed colonies (Rinta-Kanto et al., 2009) and the selective 

filtering of dreissenids on competing phytoplankton species (Vanderploeg et al., 2001). Another 

factor that has received little attention is the importance of the inter-specific competition for 

various nitrogen forms; in particular, urea and ammonium are considered energetically favorable 

forms for protein synthesis and therefore predominant stimulants of Microcystis blooms (Finlay et 

al., 2010; Chaffin and Bridgeman, 2014). There is emerging evidence from other locations around 

the Great Lakes of a positive relationship between nitrogen concentration and toxin-producing 

Microcystis strains (Murphy et al., 2003) or microcystin production (Orr and Jones, 1998; Shimoda 

et al., 2016a; Kelly et al., 2018). Research also pinpoints to iron availability as another potential 
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factor in triggering HAB events (Molot et al., 2014) or even herbicides/pesticides and other  

persistent organic pollutants (Harris and Smith, 2016), but little work has been done to evaluate 

this hypothesis in Lake Erie. 

Another major unknown is the potential role of intense precipitation events in initiating 

cHAB events in Lake Erie. Our evolving understanding of their role in lakes identifies two classes 

of effects of weather events on abiotic conditions: short-lived effects of storms on lake thermal 

structure, and more prolonged effects of precipitation events on nutrient levels and water clarity 

(Droscher et al., 2009). The abrupt abiotic changes associated with extreme events can 

subsequently trigger changes in biotic ecosystem components (e.g., primary productivity, 

composition of plankton assemblages), but the magnitude of these shifts is predominantly 

modulated by the lake trophic status as well as fundamental system attributes (e.g., fetch, depth, 

water levels, wind regimes) (Shimoda et al., 2011). Consistent with these working hypotheses, 

Zhang et al. (2016) argued that even though the reduction in external phosphorus would result in 

distinct decline in algal biomass and Microcystis blooms in the western basin, several phosphorus 

input pulses stemming from storm events could induce favorable conditions for net Microcystis 

growth and ultimately dominance. Specifically, storm runoff events can bring into the system a 

substantial amount of nutrients but also elevate the turbidity, either through riverine input or 

sediment resuspension, which creates an environment that renders competitive advantage to 

Microcystis over the rest residents of the summer phytoplankton assemblage (Belov and Giles, 

1997; Harke et al., 2016). Along the same line of evidence, Stumpf et al. (2016) asserted that the 

inflows from Maumee River not only profoundly influence the abiotic environment, but also 

combined with the prevailing circulation patterns can determine the exact area in the western basin 

where HABs may initiate (Schwab et al., 2009). Thus, one of the important augmentations of the 

existing modelling framework is the establishment of direct linkages between watershed processes 

(as characterized by the SWAT-ensemble) and the receiving waterbody, in order to advance our 

understanding on the capacity of the perturbations induced by extreme runoff events to shape the 

complex interplay among physical, chemical, and biological components in western Lake Erie.  

4.2.3. Central basin hypoxia represented by number of hypoxic days; average extent of 

hypoxic area during summer; and average hypolimnion DO concentration during August and 

September: Being different manifestations of the hypoxia in the central basin of Lake Erie, the 

three metrics were intended to offer a comprehensive assessment of the magnitude of the problem 

in order to capture its broader ramifications on ecosystem integrity. Specifically, the threshold for 
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the average August-September hypolimnetic minimum DO concentration was originally set at 2.0 

mg L-1, but a level of 4.0 mg L-1 was ultimately selected, as it offers a more sensitive proxy to 

discern the onset of hypoxic areas (Zhou et al., 2013). The targeted levels for the average extent 

of hypoxic area during summer and number of hypoxic days were subsequently set to 2000 km2 

and 30 days, respectively. Counter to the practices followed with the previous two ERIs, the annual 

total phosphorus loads from tributaries to both western basin and central basin were identified as 

a better predictor for the hypoxia problem. Three models were used to generate the load-response 

curves with differences in the spatial resolution of the predictive statements drawn, i.e., 1D-CBH 

model provided horizontally-averaged DO values, whereas ELCOM-CAEDYM and EcoLE 

horizontally-resolved DO concentrations in the bottom layer (0.5–1.0 m for ELCOM-CAEDYM; 

1.0 and 1–3 m for EcoLE). In addition, 1D-CBH model was forced with two distinct specifications 

of the load transport from the western to the central basin using: (i) the default net apparent 

attenuation loss rate due to settling; and (ii) the daily outputs from WLEEM to account for the mass 

fluxes crossing the western-central basin boundary. Regarding the achievability of the 4.0 mg DO 

L-1 threshold, the load-response curves provided a fairly wide uncertainty range, 2,600–5,100 MT, 

within which this target can be realized (Fig. S3e). Similarly, a load reduction anywhere between 

3,415-5,955 MT was projected to reduce the average hypoxic extent to 2000 km2 and the number 

of hypoxic days between 9 to 42 days (Scavia et al., 2016a,b). 

The response curves for August–September average hypolimnetic DO concentration 

displayed similar increasing trends with decreasing loads, while some discrepancies arose at lower 

nutrient loading conditions; especially when the threshold DO level of 4 mg L-1 was reached (Fig. 

S3e). Although the latter uncertainty was partly attributed to the differences of the SOD 

formulations (Scavia et al., 2016a), the reality is that there were no significant conceptual 

differences among the three models used. The discrepancies were mainly introduced by the 

specific assumptions made to parameterize simple approximations of the potential response of the 

sediments to the reduced nutrient loading. In particular, as previously mentioned, 1D-CBH used 

an empirical equation to connect TP loading directly to SOD based on a cross-sectional dataset of 

34 estuarine and coastal systems, which was then used to predict the response of Lake Erie to 

loading reductions under the assumption that the large-scale (cross-sectional) patterns described 

in the model are also representative of the dynamics of individual systems (Cheng et al., 2010). In 

doing so, we essentially assume that all the systems in the dataset have identical behavior and 

therefore the empirical relationship is the same among and within systems. Consequently, after 
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fitted to the cross-sectional dataset, Rucinski et al.’s (2014) equation provides a SOD value equal 

to 0.50 g O2 m
−2 d−1 when the annual TP loads are 4000 MT year-1, which in turn is predicted to 

bring ambient DO close to 4 mg L-1. On the other hand, EcoLE expressed SOD as a function of 

temperature and oxygen concentration (the latter relationship was mathematically described by a 

rectangular hyperbola), with an oxygen half-saturation constant for SOD set equal to 1.4 mg O2 L
-

1 and a maximum SOD rate at 20°C (0.22 g O2 m
−2 d−1) that was consistent with the range reported 

by Smith and Matisoff (2008; see their Table 1). Because of the values assigned to the two 

parameters, the oxygen losses to the sediments were predicted to be much lower (≈0.16 g O2 m
−2 

d−1) than 1D-CBH when DO exceeds the level of 4 mg O2 L
-1, which led to a disproportional DO 

increase when the external loads are low, i.e., <2000 MT year-1 (see Fig. S3e). Simply put, 1D-

CBH and EcoLE estimate distinctly different SOD rates (0.50 vs 0.16 g O2 m
−2 d−1) under the same 

level of nutrient loading. Similar to the chlorophyll a predictions, ELCOM-CAEDYM resulted in a 

load-response curve that is less steep than the rest of the members of the model ensemble, which 

likely stems from the fact an even higher maximum SOD rate at 20°C (1.2 g O2 m
−2 d−1) was 

assumed for this exercise (Bocaniov et al, 2016). While the same model postulates that the 

maximum SOD rate decreases with decreasing TP loads, the estimated SOD fluxes are much higher 

than any other of the models used (see Table S4 in Bocaniov et al., 2016). Based on the SOD rates 

reported by Smith and Matisoff (2008), the values used by EcoLE appear to be closer to the recent 

trends in Lake Erie, but the likelihood of higher oxygen demand rates cannot be ruled out given 

the considerable spatial and temporal variability characterizing the system (Matisoff and Neeson, 

2005; Schloesser et al., 2005; Paytan et al., 2017).  

As previously mentioned, to effectively augment the diversity of models included in the 

Lake Erie ensemble, there is a need for a sediment diagenesis model that quantifies SOD as the 

sum of the organic matter mineralization processes and the oxidation of reduced substances within 

different sediment layers (Gudimov et al., 2016). Only the characterization of the redox-controlled 

processes and the determination of the vertical profiles of biodegradable organic matter can allow 

a reliable estimation of the mineralization half-life period and subsequently the response rates of 

the sediments following different management actions. It is important to recognize that none of 

the existing members of the model ensemble has the mechanistic foundation to account for the 

likelihood of a lagged sediment response and unexpected feedback loops (Smith and Matisoff, 

2008). Along the same line of evidence, the meteorological forcing and its effects on the thermal 

structure (e.g., timing and duration of stratification, thickness of hypolimnion) along with the water 
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level fluctuations in Lake Erie are two important confounding factors that could further broaden 

the uncertainty band around the load-response curves predicted by the multi-model ensemble 

(Watson et al., 2016). Both theoretical and empirical evidence suggests that the year-to-year 

variability related to local weather conditions and water levels can significantly impact the severity 

of hypoxia and degree of recovery (Liu et al., 2014; Rucinski et al., 2016, Watson et al., 2016). 

Even an increased frequency of multi-day storm events during winter and spring could result in 

increased runoff from agricultural watersheds, such as the Maumee River Basin, and ultimately 

exacerbate hypoxia (Cousino et al., 2015). Another emerging issue involves the likelihood of 

significant primary productivity during the ice cover period with possible strong linkages to DO 

availability in the system. Relatively high under-ice phytoplankton biomass has been recorded in 

the central and eastern basins, comparable to or higher than values typically observed in Lake Erie 

in the summer (Oveisy et al., 2014; Reavie et al., 2016). This elevated winter-spring production in 

the central basin of Lake Erie may become available for export to other trophic levels, including 

bacterial decomposition at the lake bottom later in the year, when the increase in water temperature 

could trigger the development of hypoxia (Twiss et al., 2012; Oveisy et al., 2014). Thus, there are 

views in the literature asserting that the -easily biodegradable- biogenic material produced from 

winter-early spring algal blooms represents a considerable quantity that needs to be an integral 

part of any future modelling exercise that will revise the load-response curves.  

4.2.4. Eastern basin Cladophora represented by dry weight biomass and stored P content: 

Cladophora glomerata is a filamentous green alga that has proliferated in the rocky nearshore zone 

of eastern Lake Erie since the mid-1990s, and has been responsible for the extensive fouling of the 

local beaches by decaying organic material (Higgins et al., 2008). Because of the meso-

oligotrophic status of the offshore waters in the eastern basin, the presence of widespread 

Cladophora blooms in the nearshore area was attributed to the major reengineering of the 

biophysical littoral environment brought about by the invasion of dreissenids, including the 

profound alterations on the retention and recycling of nutrients (Tomlinson et al., 2010). Given the 

way this water quality problem manifests itself, the extent of beach fouling by sloughed material 

would have been the most suitable metric for this ERI. Nonetheless, the absence of a model (or an 

acceptable monitoring program) to evaluate the potential improvement against external nutrient 

loading reductions with such a metric, led to the pragmatic selection of algal dry weight biomass 

and stored phosphorus content as two proxies to track progress in the northeastern shoreline of 

Lake Erie (Scavia et al., 2016b). The achievability of a threshold value of 30 g dry weight 
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biomass/m2 was assessed by Valipour et al. (2016) using the high-resolution, three-dimensional 

ELCOM-CAEDYM coupled with the EBC model. Load–response curves were generated in an area 

centered on the Grand River and covering 40 km of the northern shoreline area out to the 15 m 

depth contour, and the predictions drawn suggested that P load reductions will bring about minor 

decline in the Cladophora biomass in the eastern basin (Fig. S3f). The predicted responses were 

influenced by the light availability, and the predicted changes were thus more noticeable at the 

non-light-limited shallow depths and less so at deeper depths. In fact, a small Cladophora biomass 

increase was predicted at deeper depths as a result of the improved water transparency induced by 

the most extreme loading reduction scenarios (Valipour et al., 2016). 

Consistent with Scavia et al.’s (2016a) interpretation, we believe that there are three 

compelling reasons why the predicted load-response curves should be viewed with extra caution 

First, the domain within which Cladophora growth could be regulated by SRP concentrations is 

extremely low (0.2–1.0 μg P L-1; see Tomlinson et al., 2010), while year-to-year variability even 

on the order of 1 μg P L-1 could result in variations of depth-integrated biomass by a factor of 3.5 

(Higgins et al., 2005). Second, except from the supply by dreissenid excreta (Ozersky et al., 2009), 

the SRP nearshore concentrations are also modulated by the inflows from the Grand River as well 

as the nearshore–offshore exchanges. In particular, frequent upwelling events driven by favorable 

winds of 5–10 days period can easily increase P supply above saturation levels (Valipour et al., 

2016). Third, although plausible explanations on the factors that accelerate the sloughing rates and 

their development within the Cladophora mats do exist, the mathematical representation of the 

associated processes is far from adequate. Sloughing rate is treated as a first-order loss process 

varying as a function of water temperature (physiological effect) and the depth of colonization 

(wind energy, benthic shear stress effect), but several important conceptual advancements are still 

overlooked (Higgins et al., 2008). For example, because of the absence of intercellular organelles 

or plasmodesmata, Cladophora filaments display limited transport of nutrient and other metabolic 

compounds from the surface to the base of the algal mats, and thus cellular deterioration at the 

base of the Cladophora mats can occur while cells toward the surface of the mat still actively grow 

(Higgins et al., 2006). Recognizing that nuisance Cladophora growth are controlled by both local- 

and/or basin-level factors, our ability to examine the potential impact of  large-scale watershed 

management actions and draw inference with the granularity required to understand nearshore, 

small-scale processes is confounded by considerable uncertainty. It is unrealistic to expect 

mechanistic models that have been calibrated to match average conditions in the offshore waters 
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(along with all their inherent structural and parametric uncertainties) to support predictions in the 

nearshore zone with accuracy <1 μg P L-1. There is no evidence in the international literature that 

the current generation of models can go anywhere close to the required accuracy and 

spatiotemporal resolution required to address the Cladophora problem.  

We thus emphasize that the local modelling efforts in Lake Erie will greatly benefit from 

a high-resolution monitoring of the nearshore zone to provide critical information for the existing 

model ensemble (Table S2). Rather than increasing the complexity of (already) over-

parameterized models, the management efforts will be better supported by the development of two 

empirical models offering causal linkages between the abiotic conditions (e.g., SRP, light, 

temperature) in the surrounding environment and the internal P content and sloughing rates in 

Cladophora mats. Similar to Tomlinson et al. (2010)’s polynomial functions used to incorporate 

the role of temperature and light into EBC model, after digitizing the data originally reported by 

Graham et al. (1982), our proposition is to build an empirical modelling framework that will 

connect individual snapshots of the ambient conditions in the nearshore zone with the 

contemporaneous internal P levels at different depths during the growing season as well as the net 

production rates at the base of Cladophora mats. These two models could be used independently 

or in conjunction with the existing coupled ELCOM-CAEDYM-EBC, thereby introducing an extra 

layer of causality that connects the empirical characterization of microscale processes with coarser 

scale predictions of mathematical models (Shimoda et al., 2016b; see also following discussion).  

4.2.5. Take-home Messages: In our attempt to distinguish between predictable patterns 

and sources of uncertainty with the load-response curves developed for the four ERIs, there are 

several lessons learned and important issues for future consideration: (i) the diversity of the 

existing modelling work in Lake Erie as well as the general evidence from the international 

literature suggest that the forecasting exercise related to the overall summer phytoplankton 

biomass in the western basin has a lot of potential to meaningfully assist the local management 

efforts. Our analysis highlighted the need to establish a more reliable empirical model (chlorophyll 

a versus TP and other potential predictors) and also improve our understanding (and subsequently 

their representation with the existing mechanistic models) of certain facets of phytoplankton 

ecology, such as the postulated degree of reliance of phytoplankton growth upon internal nutrient 

sources (e.g., microbially mediated regeneration, dreissenid or zooplankton excreted material in 

nearshore and offshore waters, respectively), the internal P loading from the sediments, and 

phytoplankton-zooplankton interactions. (ii) Considering the challenges with the modelling of 
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individual phytoplankton functional groups, the forecasting exercise regarding the cHAB 

likelihood of occurrence under different loading regimes is as robust as can it be realistically 

expected. The coupling of empirical and process-based models offers a healthy foundation to 

evaluate competing hypotheses and advance our knowledge on the suite of factors that may trigger 

cyanobacteria dominance in Lake Erie. We just caution though that the reported range of 

cumulative Maumee March–July annual loads of 1679–2170 MT for achieving the cHAB target is 

likely narrow and does not fully reflect the actual uncertainty with this ERI. (iii) Our study casts 

doubt on the ability of the existing models to support reliable predictions regarding the likelihood 

to alleviate the hypoxia in the central basin of Lake Erie, given that our mechanistic understanding 

of sediment diagenesis, i.e., the characterization of organic matter mineralization and redox-

controlled processes within different sediment layers, is still inadequate. There is a rich research 

agenda that should be in place with the next iteration of the adaptive management cycle, before 

we are in a position to predict the degree and timing of the sediment response or the likelihood of 

unexpected feedback loops that could delay the realization of the anticipated outcomes. (iv) The 

modelling of Cladophora in the eastern basin has been insightful but carries little predictive value. 

The proposed high-resolution monitoring of the nearshore zone and subsequent establishment of 

causal linkages between abiotic conditions (e.g., SRP, light, temperature) in the surrounding 

environment and the internal P content and sloughing rates in Cladophora mats are two essential 

steps to further augment the existing modelling work.    
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5 Environmental Modelling and Adaptive Management 

Implementation in Lake Erie 

The rigorous analysis of decision problems in water quality management requires 

specification of ecosystem indicators that reliably reflect the prevailing conditions; an objective 

function to evaluate benefits and costs of alternative management strategies; predictive models 

formulated in terms of variables relevant to management objectives; a finite set of alternative 

management actions, including any conditional constraints on their use; and a monitoring program 

to follow system evolution and responses to management (Walters, 1986). In this regard, one of 

the major challenges is associated with the uncertainty in the predictions of management outcomes. 

This uncertainty may stem from incomplete control of management actions, errors in 

measurements and sampling, environmental variability, or incomplete knowledge of system 

behavior. Failure to recognize and account for these sources of uncertainty may lead to catastrophic 

environmental and economic losses. Consequently, there has been a growing interest in the policy 

practice of adaptive management, as it provides an iterative implementation strategy recommended 

to address the uncertainty associated with ecological forecasts and to minimize the impact of 

inefficient management plans. Adaptive implementation or “learning while doing” augments 

initial forecasts of management actions with post-implementation monitoring, and the resulting 

integration of monitoring and modelling provides the basis for revised management actions. In 

Lake Erie, a unique combination of statistical and mathematical models have been developed to 

evaluate the relationships among watershed physiography, land use patterns, and phosphorus 

loading, to understand ecological interactions, to elucidate the role of specific facets of the 

ecosystem functioning (internal loading, dreissenids), and to predict the response of the lake to 

external nutrient loading reductions. Consistent with the scientific process of progressive learning, 

the present study aimed to assist the next iteration of the modelling framework by impartially 

identifying strengths and weaknesses of the existing models and pinpointing essential 

augmentations and research/monitoring priorities in order to effectively integrate watershed and 

aquatic ecosystem processes (Fig. 6). 
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5.1 Building an integrated modelling framework in the context of adaptive management 

implementation: What are the recommended next steps? 

Recognizing that we can never have all the empirical information to develop a completely 

constrained model, there is always a trade-off between knowing “much about little” or “little about 

much” in the environmental modelling practice. In Lake Erie, most of the existing work opted for 

the latter strategy, whereby complex mathematical tools have been used to advance our 

understanding of the mechanisms operating both in the watershed and receiving waterbody 

(Shimoda et al., 2018). In a recent critique, Kim et al. (2014) argued that the majority of these 

process-based models are profoundly over-parameterized with unproven ability to provide robust 

predictive statements. Regarding the latter assertion, the skill assessment results presented by 

Scavia et al. (2016a,b,c) were particularly favorable with respect to their ability to capture the 

magnitude of important eutrophication indicators, such as phosphorus loading, phytoplankton 

biomass, and hypoxia severity, at an aggregated spatiotemporal (seasonal/annual time scale, basin- 

or lake-wide) resolution. In principle, the selected coarse scales for evaluating model performance 

in time and space are defensible, as they are consistent with those used for the established nutrient 

loading targets and water quality indicators in Lake Erie (Scavia et al., 2016a,b). Nonetheless, 

given that the majority of these models are based on daily (or sub-daily) simulations within one- 

Figure 6: Knowledge gaps and sources of uncertainty to guide monitoring and improve modelling in Lake Erie (See also 

Table S2).    
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to three-dimensional spatial domains, it would seem that the bar of what constitutes an acceptable 

model performance has been lowered significantly. There are compelling reasons why this practice 

is problematic and should be revisited during the next iteration of the modelling framework. From 

a technical standpoint, evaluating model goodness-of-fit with a coarser resolution not only entails 

the risk to obfuscate multiple daily or location-specific errors/biases that cancel each other out 

when seasonally or spatially averaged, but may also detract the attention from the much-needed 

critical evaluation of the process characterizations derived after the calibration of (prone-to-

overfitting) complex models. In particular, many of the assumptions made or parameter values 

assigned could be adequate to describe spatially or temporally aggregated patterns, but could also 

be the culprits for the misrepresentation of important aspects of the intra- or inter-annual and 

spatial variability (e.g., magnitude of the spring freshet, timing of algal blooms, and response of 

the nearshore zone to extreme precipitation events). Our independent model-fit reassessment 

exercise on a daily scale reinforced the importance of the latter issue by showing the distinctly 

inferior performance of both watershed and aquatic ecosystem models, as well as their inability to 

capture critical short-term or event-based facets of the simulated terrestrial and aquatic 

biogeochemical cycles. 

In Lake Erie, the development of an ensemble of models offers the unique ability to 

evaluate competing hypotheses regarding the relative importance of hydrological processes and 

mechanisms of nutrient fate and transport within a watershed context, or the plausibility of 

alternative aquatic ecosystem conceptualizations; especially when complex over-parameterized 

models are in place with inadequate empirical information to pose any meaningful constraints. The 

propagation of this uncertainty through the environmental forecasts (i.e., BMP scenarios, load-

response curves) was based merely on the generation of the uncertainty envelope from individual 

model predictions, without the consideration of weighting factors that consider their goodness-of-

fit, bias, or model complexity (Scavia et al., 2016b, 2017). Counter to this practice, there are 

viewpoints in the literature advocating the development of weighting schemes to objectively 

synthesize ecological forecasts from multiple models (Wilks, 2002; Raftery et al., 2003; Roulston 

and Smith, 2003). One of the critical decisions involves the development of standards for the 

calibration and validation domains that will allow to rigorously evaluate the ability of a model for 

extrapolative tasks, i.e., forecast conditions distinctly different from those currently prevailing in 

the modelled system (Ramin et al., 2012a). Another criterion focuses on the goodness-of-fit of 

individual models as a weighting factor to determine their corresponding influence on the 
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ensemble predictions. In particular, Ramin et al. (2012a) advocated the consideration of the 

performance over all model endpoints, for which observed data exist, rather than the variables 

more closely related to the environmental management problem at hand. In doing so, we ensure 

that the models included in an ensemble environmental forecast should have balanced performance 

over their entire structure. To put in another way, we ought to penalize the likelihood of calibration 

bias, whereby the maximization of the fit for a specific variable (e.g., nutrients or total 

phytoplankton biomass) may be accompanied by high error for other variables (e.g., individual 

phytoplankton functional groups or zooplankton), and thus avoid deriving forecasts founded upon 

models with misleadingly high weights that conceal fundamentally flawed representations of 

system behaviour. Other criteria for the development of ensemble weighting schemes are the 

consideration of penalties for model complexity that will favor parsimonious models (McDonald 

and Urban, 2010), and performance assessments that do not exclusively consider model endpoints 

but also evaluate the plausibility of the values assigned to major processes pertaining to water 

budget, nutrient cycles, and critical ecological pathways against empirical estimates; whenever 

these values exist (Arhonditsis and Brett, 2004; Wellen et al., 2015). Regarding the latter factor, it 

is also important to reiterate that no consistent information has been reported in the Lake Erie 

modelling literature regarding the relative magnitude of modelled biogeochemical fluxes, and 

therefore it is difficult to evaluate how “diverse” the model ensembles for the watershed or 

receiving waterbody are or to what extent the individual models replicate the same characterization 

of the system functioning. 

In reviewing the credibility of the load-response curves, our study highlighted several 

important structural augmentations of the existing modelling tools that could increase both their 

heuristic and predictive values as long as commensurate empirical knowledge to constrain the 

mathematics becomes available from Lake Erie. If we strive to establish predictive linkages 

between the magnitude and timing of the response of the sediments and different loading regimes, 

the study of the sediment diagenesis processes is essential in understanding the control of redox 

chemistry on the vertical profiles of biodegradable organic matter and P binding forms (Gudimov 

et al., 2016). Albeit their conveniently simple form, the expressions of SOD as a function of DO, 

temperature, or even TP loading are primarily conceptual without adequate ground-truthing in the 

literature and therefore carry little predictive power. Empirical information is also needed to 

constrain the submodels/differential equations related to dreissenids, Cladophora, and 

zooplankton. While some progress has been made in representing the role of dreissenid mussels in 
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the system (Verhamme et al., 2016; Karatayev et al., 2017), little work has been done to adapt the 

existing Cladophora submodel to the nearshore zone and even less so to depict the phytoplankton-

zooplankton interactions in Lake Erie (Table S2). Likewise, with the shift in focus to the average 

conditions of the offshore waters, the nearshore zone has received less attention from the existing 

modelling work in Lake Erie. These areas are intermediate zones in that they can receive polluted 

inland waters from watersheds with significant agricultural, urban and/or industrial activities while 

mixing with offshore waters, having different biological and chemical characteristics. Coastal 

upwelling events during the early summer appear to modulate offshore-nearshore mass exchanges, 

whereby nutrients and hypoxic waters are injected from the hypolimnion into the nearshore Lake 

Erie (Valipour et al., 2016). Surface waves can also resuspend bottom sediments in the shallow 

waters, and as they tend to be repositories of both nutrients and contaminants, resuspension events 

are highly important in predicting water quality. Thus, there is a need for an integrated watershed-

receiving waterbody modelling framework to shed light on the interactions of surface/subsurface 

hydrological inflows with in-lake hydrodynamics that shape to a large degree the dispersal of 

pollutants and consequently the spatial extent and magnitude of associated ecological impacts in 

different basin of Lake Erie (Schwab et al., 2009). 

Another critical challenge revolves around the establishment of robust phytoplankton 

group-specific parameterizations to support predictions in a wide array of spatiotemporal domains, 

given the uncertainty with the derivation of distinct functional groups from fairly heterogeneous 

algal assemblages and our knowledge gaps of cyanobacteria ecology (Shimoda and Arhonditsis, 

2016). The ability of the current generation of plankton models to reproduce succession patterns 

and structural shifts in phytoplankton communities has not been proven yet, and thus efforts to 

predict cHABs with process-based models are often characterized as attempts to “run before we 

can walk” (Anderson, 2005). Although we do not agree with these skeptical views, we do believe 

that the inclusion of empirical cause-effect relationships in the model ensemble to link the nutrient 

loading variability with the magnitude of the summer harmful algal bloom offers a reliable 

complementary framework to track the anticipated response of the system (Bertani et al., 2016; 

Stumpf et al., 2016). Building upon the Bayesian foundation of some of these empirical tools, the 

next steps should involve their sequential updating as more data are acquired through monitoring, 

as well as the consideration of additional predictors to accommodate the role of other nutrients, 

light availability, water column stability, and water temperature. The latter augmentation not only 

will improve our predictive power, but will also allow to establish hierarchical linkages between 
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the year-to-year variability captured by the Bertani et al.’s (2016) and Stumpf et al.’s (2016) studies 

and within-year conditions that ultimately lead to cHAB formation (Shimoda et al., 2016a).  

5.2 Do we need other models to complement the SWAT framework in the Maumee River 

watershed?   

In terms of the diversity of the watershed modelling framework, SWAT has been the only 

process-based model used to evaluate alternative agricultural management practices in the 

Maumee River watershed. Notwithstanding its conceptual and operational advantages, an 

important question arising is to what extent are we missing profound advancements of our 

understanding of watershed processes that other models can offer? To address the latter question, 

we compared SWAT against eight commonly used physically-based watershed models, i.e., the 

AGricultural Non-Point Source Pollution Model (AGNPS; Kirnak, 2002), Distributed Large Basin 

Runoff Model (DLBRM; He and DeMarchi, 2010), Dynamic Watershed Simulation Model 

(DWSM; Borah et al., 1999; 2002), Generalized Watershed Loading Function (GWLF; Borah et 

al., 2006), Hydrologiska Byråns Vattenbalansavdelning-Integrated Catchment (HBV-INCA; 

Crossman et al., 2013), Hydrological Simulation Program-Fortran (HSPF; Canale et al., 2010), 

MIKE SHE (Refsgaard and Storm, 1995), and Storm Water Management Model (SWMM; 

Rossman and Huber, 2016), regarding their strategies to capture surface runoff, groundwater, 

sediment transport, nutrient cycling, and channel routing (Fig. 7). For the purpose of the present 

study, we only provide the distinct modelling strategies that are available in the literature, but 

detailed description of the various models can be found in Dong et al. (2018).  
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Figure 7: Comparison of SWAT against other process-based watershed models in terms of the representation of 

selected watershed processes (surface runoff, groundwater, sediment transport, phosphorus cycle, channel routing, 

and BMP simulations). The abbreviations stand for SWAT: Soil Water Assessment Tool; AGNPS: Agricultural Non-

Point Source Pollution Model; DWSM: Distributed-Parameter Large Basin Runoff Model; GWLF: Generalized 

Watershed Loading Functions; DWSM: Dynamic Watershed Simulation Model; HBV: Hydrologiska Byråns 

Vattenbalansavdelning; INCA: Integrated Catchment Model; HSPF: Hydrologic Simulation Program FORTRAN; 

SWMM: The Storm Water Management Model; SCS-CN: The Soil Conservation Service Curve Number method; GA: 

Green-Ampt infiltration method; MUSLE: Modified Universal Soil Loss Equation.    

To quantify the potential magnitude of surface runoff, SWAT uses the empirical Soil 

Conservation Service Curve Number (SCS-CN) method based on the antecedent moisture 

condition and the hydrologic soil group of a particular location at a given day. The SCS-CN method 

lumps rainfall interception, depression storage, and soil infiltration as the initial abstractions, 

which are assumed to account for 20% of the potential maximum retention. The surface runoff is 

estimated by subtracting that amount from the rainfall total volume, and therefore the total 

precipitation volume should exceed the initial abstraction before any runoff is generated. Because 
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of the limitations of the SCS-CN method in estimating cumulative runoff depth and peak flows 

(Borah et al., 2007), SWAT also provides a sub-daily simplified model, the Green-Ampt (GA) 

infiltration method, by postulating a uniform movement of water from the surface down through 

the deep soil with a sharp wetting front. The HBV and DLBRM models used the linear-reservoir 

concept to represent the rainfall-runoff process at the watershed scale, based on the assumption 

that the overland flow is linearly correlated with the water storage. HSPF uses the Philip equation, 

which is a sub-daily method simplified from the Richards’ equation (Richards, 1931). The latter 

approach is considered by the MIKE SHE model and describes the vertical movement of water 

through the soil profile using Darcy’s law. The flow rate through porous media is proportional to 

the hydraulic conductivity, which in turn is estimated from the soil water content (Baver et al., 

1972). Compared to other models, the Richards’ equation could more accurately quantify vertical 

water percolation and dynamic unsaturated flow based on various soil properties. 

In terms of the representation of subsurface process, SWAT incorporates a kinematic 

storage model to simulate lateral flow in the unsaturated zone. The saturated zone is conceptualized 

as an unconfined shallow aquifer and confined deep aquifer. Groundwater flowing into the main 

channel is assumed to be linearly correlated with hydraulic conductivity and the changes of the 

water table height. By contrast, a simple linear reservoir model is used in DLBRM, HBV, HSPF, 

and GWLF, whereby interflow and groundwater are linearly proportional to moisture content of 

the unsaturated zone and saturated zone, respectively. Conceptually similar with the division of 

shallow and deep aquifers in SWAT, HSPF divides the saturated zone into two storage reservoirs: 

active and inactive groundwater. AnnAGNPS also uses a simple empirical method, the Darcy’s 

equation, assuming that lateral flow is linearly related to saturated hydraulic conductivity and 

hydraulic gradient. Compared to subsurface modelling in SWAT, both the linear reservoir model 

and the Darcy’s equation are simpler representations of the subsurface system. Conversely, MIKE 

SHE provides a more reliable physically-based 3D saturated zone model to explicitly represent the 

vertical and spatial characteristics of the subsurface profile. MIKE SHE incorporates a 3D Finite 

Difference Method numerical engine, which is theoretically similar to MODFLOW (MODular 3D 

Finite-Difference Ground-Water FLOW Model) (McDonald and Harbaugh, 2003). The subsurface 

modelling in SWAT could be complemented with MIKE SHE by tracking the vertical solute 

transport and providing a comprehensive, fully dynamic depiction of the hydrological interplay 

between surface and subsurface layers.  
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One of the commonly used strategies to quantify soil erosion, the modified Universal Soil 

Loss Equation (MUSLE), is used in SWAT. MUSLE is developed from the original USLE method 

by replacing the rainfall-erosivity (R) factor with a runoff energy factor. The Revised USLE 

(RUSLE) used in AnnAGNPS is another modification by converting the soil erodibility (K) factor 

to a time-varying parameter. Counter to these USLE-based empirical approaches, DWSM, HBV-

INCA, HSPF, and MIKE-SHE offer physically-based methods that explicitly accommodate the 

physical detachment/reattachment and transport processes. The European Soil Erosion Model 

(EUROSEM) used in MIKE SHE considers soil detachment affected by both raindrop and leaf 

drainage, which enables explicit representation of effects of vegetation heights. By contrast, HSPF, 

INCA and DWSM erosion models ignore the effects of leaf drip. Thus, the sediment erosion module 

in MIKE SHE introduces an advanced representation of our contemporary understanding of the 

soil erosion process, which could be used to complement the empirical MUSLE method in SWAT. 

Soil phosphorus (P) simulation with SWAT is based on the EPIC (Erosion Productivity Impact 

Calculator) model (Sharpley and Williams, 1990), which includes three organic P pools (fresh, 

active and stable) and three inorganic pools (solution, active and stable). In SWAT, fertilizer, 

manure, and residues are the input sources of soil P, which could be removed by plant uptake, 

water flow and soil erosion. The plant P uptake is dependent on plant growth, simulated as a 

function of the leaf area growth, light interception, and biomass production. One of the strengths 

of the EPIC model used in SWAT is the explicit simulation of the daily plant growth, whereas other 

models, like INCA and HSPF, represent plant growth either through a seasonal plant growth index, 

or a simple empirical first-order kinetics equation. SWAT also takes into account the residue decay 

and mineralization, which is not considered with HSPF and INCA and may thus limit their ability 

to evaluate the importance of legacy P. Nevertheless, a major limitation of SWAT in simulating 

long-term soil P dynamics is the assumption of a constant equilibrium adsorption/desorption 

concentration. On the contrary, HSPF adjusts the adsorption rates by soil temperature, and 

furthermore, INCA varies the equilibrium inorganic P concentration based on the mass of P in the 

labile soil store. The latter feature can be quite critical when evaluating the long-term watershed 

responses to various agricultural management strategies. 

Existing submodels of water routing in channels could be divided into four main categories 

spanning a wide range of complexity: the dynamic wave model; the diffusive wave model; the 

kinematic wave model; and the non-linear reservoir model. The dynamic wave model used in 

MIKE SHE and SWMM is the most complex physically-based approach based on the continuity 
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and momentum equations (Tayfur et al., 1993). The diffusive wave model uses simplified 

momentum equations by downplaying the role of local and convective acceleration. SWAT uses 

the kinematic wave model, which incorporates the most simplified momentum equation by 

omitting the pressure gradient and acceleration terms (Miller, 1984). The non-linear reservoir 

model divides the channel segments into a series of reservoirs with uniform water surface. Since 

SWAT omits pressurized flow and backwater effects, it is not capable of simulating pipe flows, 

whereas a fully dynamic wave equation to model water routing would be applicable to both open 

channels and closed pipes.  

Considering the different strengths of the watershed models reviewed, SWAT could be 

complemented by the modules of other watershed models, especially for surface runoff, 

groundwater and sediment erosion processes. For the hydrological and sediment processes, MIKE 

SHE seems to be more up-to-date with respect to the mechanisms considered, assuming that local 

empirical knowledge is available to constrain the additional parameters. Although SWAT has the 

advantage to explicitly simulate the daily plant growth, it could be improved by adopting the 

dynamic P equilibrium concentration. MIKE SHE and SWMM are superior to SWAT in channel 

routing because of their capability to simulate pipe flows. SWAT is also more suitable for 

agricultural BMPs (e.g., terracing, contouring, strip cropping, tillage operations, crop rotations, 

and fertilizer application), while the urban BMP modules in SWMM (e.g., rain gardens, green roofs, 

infiltration trenches, permeable pavement, and vegetative swales) offer a more reliable alternative 

(Dong et al., 2018). Another challenge with the existing SWAT applications in the Maumee River 

watershed was the consistent event-flow underestimation, which can be potentially ameliorated by 

the use of an alternative runoff estimator, such as a Green-Ampt method, instead of the 

conventional CN method (James et al., 1992; King et al., 1999). Nonetheless, it is important to 

recognize that the characterization of surface runoff and subsurface processes during flow events 

is largely unknown in the area, and therefore the design of high frequency, event-based, water 

quality sampling coupled with water stable isotope analysis (18O and 2H) should be one of the 

priorities in our efforts to rectify the misrepresentation of extreme flow conditions (Klaus and 

McDonnell, 2013; Kim et al., 2018). In the same context, recent advancements in hydrology 

suggest that baseline conditions and extreme events may be associated with distinct flow 

mechanisms, and thus two major strategies have been proposed to accommodate threshold 

behavior in watershed models (Zehe and Sivapalan, 2009). The first strategy is the introduction of 

a two-domain conceptualization of soil water movement into numerical watershed models, 
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whereby flow through the soil matrix or macropore flow is responsible for small and large runoff 

events, respectively (Zehe et al., 2001). The second approach postulates that the watershed 

operates in multiple states or modes of behavior, and the identification of which can be explicitly 

accommodated through the model calibration process (Ali et al., 2013). A characteristic example 

of this strategy is the Bayesian hierarchical framework used to calibrate the SWAT model in 

Hamilton Harbour (Ontario, Canada), which enabled the identification of precipitation thresholds 

that trigger shifts to alternative watershed states as well as state-specific parameters to depict 

extreme states with higher propensity for runoff generation (Wellen et al., 2014a,b).  

Together with the process-based modelling work in the Maumee River watershed, it is also 

critical to have simpler empirical models in place that not only provide predictive statements 

confined within the bounds of data-based parameter estimation, but also to constrain 

processes/fluxes parameterized by mechanistic models or even to validate the corresponding 

forecasts drawn. A characteristic example of the potential benefits of a data-driven model is the 

use of SPARROW to validate the predicted spatial distribution of phosphorus loads in the Maumee 

River watershed by the five SWAT applications (Scavia et al., 2016c). SPARROW is a hybrid 

mechanistic-statistical model, with empirically-based parameters (i.e., land-to-water delivery 

coefficients, nutrient export from different land uses, in-stream attenuation rates, reservoir settling 

velocities) used to estimate nutrient loading from a series of hydrologically linked catchments and 

thus to delineate areas of high risk in many Great Lakes watersheds (Wellen et al., 2014a,b; Kim 

et al., 2017). Interestingly, the SPARROW spatial projections were not in agreement with the 

SWAT-ensemble predictions of nutrient-export hot-spots in the northwestern part of the Maumee 

River watershed (Fig. S1), and instead were suggestive of an extensive area in the southern/ 

southwestern Maumee River watershed with TP loading estimates distinctly higher than 150 kg 

km-2 yr-1 (Scavia et al., 2016c). In the same context, Kim et al. (2018a) used the Base Flow Index 

(BFI) map as an independent source of information to reconcile these projected discrepancies in 

the Maumee River watershed attributes (Fig. S4). BFI is a measure of the ratio of long-

term baseflow to total stream flow, representing the slow continuous contribution of groundwater 

to river flow, and therefore low (high) BFI values suggests higher (lower) likelihood of surface 

runoff which in turn can lead to higher (lower) suspended solid and particulate phosphorus loads. 

The consistently lower values of the empirically obtained baseflow index in the southern/ 

southwestern Maumee River watershed appear to be closer to the SPARROW rather than SWAT 

spatial predictions (Fig. S4). While the latter result may not be an evidence for unequivocally 
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ground-truthing either of the two models, it does highlight the aforementioned need for the current 

members of the SWAT-ensemble to be recalibrated against data from multiple sites across the 

watershed, as well as to revisit some of the fundamental assumptions regarding the fertilizer/ 

manure application rates in the croplands or the spatial drainage of soils. 

The existing SPARROW application in Lake Erie is part of the regional model developed 

for the Upper Midwest (Great Lakes and Upper Mississippi, Ohio, and Red River Basins or MRB3 

model as referred to in Robertson and Saad, 2011), which comprised 810 sites of TP empirical 

loading estimates. Lake Erie accounted for less than 6% of those sites, while the median and 90% 

percentile of the local loading estimates were 30% and 70% lower than the corresponding values 

in the entire dataset, respectively (Material S3 in Supporting Information section of Robertson and 

Saad, 2011). The use of “cross-sectional” datasets over broader regions has been one of the pillars 

of the SPARROW modelling enterprise, as this practice is deemed more suitable in unravelling the 

complex patterns in a watershed context while the significant loading range across the calibration 

locations typically leads to well-identified parameters and a larger application domain (Alexander 

et al., 2004). To mitigate the impact of potential outliers or non-representative calibration data, 

USGS has implemented a number of procedures, including subjective data censorship of daily 

records for both flow and nutrient concentrations in case they are obstructing satisfactory 

Fluxmaster regression fit (Schwarz et al., 2006); water quality monitoring stations with number of 

records below a certain number are filtered out from further consideration; and stations with 

Fluxmaster model errors >50% are omitted from SPARROW calibration datasets (Robertson and 

Saad, 2013; Neumann et al., 2018). Nonetheless, these practices can neither address the problem 

of datasets that disproportionately consist of baseline- rather than event-flow samples (Richards et 

al., 2013; Long et al., 2014; 2015), nor do they overcome the fact that the assumption of regionally 

common parameters could introduce watershed-specific bias in the characterization of 

fundamental processes, such as nutrient export from different land-uses, land-to-water delivery, 

and in-stream attenuation rates. An appealing alternative that could rectify many of these problems 

will be the development of a Great Lakes SPARROW model that narrows the focus of the original 

MRB3 model, while maintaining its “global” character (Fig. 8). Importantly, the rigid common 

parameter estimates over the entire spatial model domain can be relaxed by the use of a hierarchical 

structure that allows to estimate watershed-specific parameters, and thus accommodate the spatial 

variability within the Great Lakes basin. In addition, rather than the strict data censoring currently 

implemented, the SPARROW practice should become more inclusive and instead the calibration 
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datasets could be coupled with measurement-error models to characterize our degree of confidence 

on their quality or to accommodate the serial correlation among nested subwatersheds (Carroll et 

al., 2006; Balin et al., 2010; Wellen et al., 2012; 2014; Kim et al., 2017). This is an important 

exercise that will consolidate the presence of an empirical modelling tool to guide the delineation 

of nutrient hot-spots alongside the process-based modelling work. 

Figure 8: The case of a Great Lakes hierarchical SPARROW: Coupled with the mechanistic tools for the Maumee 

River watershed, empirical (SPARROW-like) models geared to depict basin-specific (rather than continental or 

regional) nutrient loading conditions can offer a multitude of complementary benefits, such as validate the spatial 

delineation of hot-spots with higher propensity for nutrient export, narrow down the uncertainty of processes/fluxes 

parameterized by mechanistic models, and obtain predictive statements constrained within the bounds of data-based 

parameter estimation. 
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5.3 Risks and uncertainties with the implementation of Best Management Practices: 

What does the literature suggest? 

A variety of costly BMPs have been designed to mitigate pollution from diffuse sources in 

agricultural and urban areas (Sharpley, 2006; Dietz, 2007; Edwards et al., 2016; Leitão et al., 2018). 

Although their implementation has been based on the stipulation that both their short- and long-

term effectiveness are guaranteed, emerging evidence is suggestive of moderate water quality 

improvements in many watersheds and broad variability in their performances, often  much lower 

compared to the specs of the original design from BMP experimental studies (Kleinman et al., 

2011; Jarvie et al., 2013). This form of scenario uncertainty can be attributed to a number of factors, 

such as suboptimal design, lack of landowner participation (Figs. S5a,b), erroneous selection of 

BMPs (Fig. S5c), failure to address non-point pollution sources, inadequate coverage of the 

watershed, lag time between BMP implementation and distinct improvements of downstream 

conditions, different efficiency between particulate and soluble forms (Figs. S5d,e), and variability 

induced by extreme events and other weather-related anomalies (Meals et al., 2010; Liu et al., 

2017). In Lake Erie, Smith et al. (2017) noted that the majority of local farmers apply P fertilizers 

at or below the current recommendations, and thus asserted that the main culprit for the recent re-

eutrophication could be the lack of appropriate fertility guidance and practices to protect water 

quality. The same study also questioned whether the “law of unintended consequences” has 

received sufficient consideration in the local decision-making process, as environmental 

interventions can conceivably have long-term damaging effects on ecosystem services given our 

limited knowledge of complex system interactions (May and Spears, 2012; Smith et al., 2017). 
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In the same context, Osmond et al. (2012) raised concerns that many important empirical 

findings from past conservation practices across North America have not been incorporated into 

current BMP guides. For example, earlier work in the area cautioned that the focus on sediment 

erosion control (no-till conservation, buffer strips, and fall fertilization) may entail a trade-off 

effect with elevated losses of bioavailable phosphorus (Logan, 1979; Gebhardt et al., 1985) and 

indeed recent studies by Jarvie et al. (2017) and Baker et al (2017) have attributed the re-

appearance of HABs to the unintended consequences from conservation decisions adopted 20-50 

years ago (Fig. 9). More recently, Liu et al. (2017, 2018) identified that BMP performance 

assessments are predominantly based on short-term experimental studies, whereas long-term 

monitoring has registered variable performance trends. For example, Mitsch et al. (2012) has 

observed a gradual degradation of constructed wetlands effectiveness for SRP removal within 15 

years of monitoring, while Kieta et al. (2018) reported limited efficiency of vegetative buffer strips 

(VBS) in Great Lakes basin, where the majority of nutrients are transported with spring freshet 

Figure 9: Risks and uncertainties with the BMP implementation of Best Management Practices in the Maumee River 

watershed. Our study highlights the importance to design land-use management scenarios that accommodate recent 

conceptual and technical advancements of the life-cycle effectiveness of various BMPs, the variability in their starting 

operational efficiency, and differential response to storm events or seasonality. 
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during the non-growing season. Similarly, Li and Babcock (2014) reported long-term 

orthophosphate areal export rates from green roofs comparable to those of highly intensive 

agricultural areas. In order to minimize the discrepancy between expected and actual 

environmental effects, Liu (2018) proposed a framework to incorporate BMP life-cycle 

effectiveness into watershed management plans by explicit accounting for: (i) the variability in 

starting efficiency of each BMP type to reduce the severity of runoff and pollutant concentrations 

due to local condition differences and installation practices; (ii) an intrinsic variability of 

operational performance due to watershed geophysical conditions, differential response to storm 

events, and seasonality; (iii) a non-linearity of BMP effectiveness in response to different loading 

regimes as well as an expected decline in performance over time, which in turn enforces the need 

for regular maintenance; and (iv) a lagged manifestation of water quality improvements after BMP 

adoption due to nutrient spiraling downstream or recycling in receiving water bodies (Fig. 9).  

Promoting watershed management plans often requires financial incentives, such as tax 

credits, cost-sharing, reimbursements, insurance and certification price premiums (Tuholske and 

Kilbert, 2015). The aforementioned discrepancy in timing between BMP implementation and 

water quality improvement can make the financial incentives unappealing, if we opt for the “pay-

per-performance” practice. Failure of selected BMPs to achieve loading reduction targets should 

be viewed cumulatively as direct budget losses, environmental capital depreciation, and socio-

economic values at risk (Farber et al., 2002; Wolf and Klaiber, 2017). The consideration of BMP 

uncertainties into scenario analysis would introduce financial risk assessment in strategic agro-

environmental management decisions by weighting the amount of the proposed financial 

incentives with non-attainment risks of nutrient reduction goals (Palm-Foster et al., 2016). The 

Chesapeake Bay BMP review protocol can serve as an exemplary case of comprehensive 

validation guidance of BMP effectiveness based on rigorous assessment of both treatment risks 

(known probabilities associated with BMP performance) and uncertainty (lack of knowledge 

surrounding these probabilities). The CBP protocol is based on transparency and inclusivity, and 

as such it considers detailed literature review, expert elicitation, data collection from local BMPs, 

and rigorous analysis (CBP, 2015). 

To the best of our knowledge, none of the current watershed models accounts for the life-

cycle non-stationarity or overall uncertainty in BMP effectiveness. In particular, SWWM5 does 

consider concentration-dependent removal of pollutants with specific BMPs during peak and base 

flows, but still relies on deterministic values of statistically significant median influent- and 
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effluent-event concentrations (Rossman and Huber, 2016). Other major ecohydrological models, 

such as SWAT and HSPF, are either based on a deterministic (pre-specified constant) nutrient 

removal effectiveness or on empirical relationships of variable statistical power (Dorioz et al., 

2006). A characteristic example is the SWAT model which considers the impact of vegetative filter 

strips (VFS) on dissolved phosphorus removal as a linear function of surface runoff reduction. 

Nonetheless, the corresponding regression model explains less than 30% of the observed 

variability, while the empirical reduction efficiency ranges from 43% to -31% near zero runoff 

reduction (Dillaha et al., 1989). As a first step to accommodate BMP uncertainty, we thus propose 

a moderate enhancement with a stochastic time-invariant representation of BMP effectiveness in 

watershed models (Griffin, 1995), followed by the introduction of time-variant probability 

distributions for BMP life-cycle performance (Liu et al., 2018). The proposed stochastic 

augmentation would allow sampling over the uncertainty of BMP scenarios with Monte Carlo 

simulations, thereby providing a pragmatic tool to assess the likelihood of the achievability of the 

proposed nutrient loading reduction goals. These probabilities can then be subjected to sequential 

updating through the iterative monitoring-modelling-assessment cycles of adaptive management, 

whereby our degree of confidence on the success of a selected BMP strategy can be refined. 

5.4 Integration of ecosystem services with the Lake Erie modelling framework: An 

optional augmentation or an emerging imperative?  

Ecosystem services are the benefits that humans directly or indirectly gain from ecosystem 

functions (Costanza et al., 1997). Viewing ecosystems as providers of economically valuable 

benefits to humans, the concept of ecosystem services effectively links their structural and 

functional integrity with human welfare. Lake Erie, in particular, provides numerous valuable 

benefits by supplying drinking water for over 11 million people, supporting a $50 billion industrial 

sector that encompasses tourism, boating, shipping, and fisheries, providing over 240,000 jobs in 

both the American and Canadian economies, and offering habitat for ecologically, culturally, and 

economically important biotic communities (Lake Erie Improvement Association, 2012). There is, 

however, a pressing need to collectively protect ecosystem services that are at risk in the current 

degraded state of Lake Erie. Given that environmental policy affects both the ecosystem state and 

the provision of services that human societies benefit from, we argue that the efficacy of the local 

restoration efforts will be significantly enhanced by a rigorous framework that quantifies the 

economic benefits from a well-functioning ecosystem. Rather than solely acknowledging their 



Page | 69  

 

vulnerabilities, the actual quantification of the value of ecosystem services is critical when 

considering trade-offs among diverse policy decisions.  

The rationale behind ecosystem valuation is to explicitly describe how human decisions 

affect ecosystem service values and to express these changes in monetary units that allow for their 

incorporation in the decision-making process (Pascual et al., 2010). Current markets provide 

information about the value of a limited subset of ecosystem services that are priced as 

commodities (Pascual et al., 2010), which poses challenges in our ability to estimate values of a 

comprehensive set of ecosystem services typically considered in the decision-making process 

(Millennium Ecosystem Assessment, 2005). To best communicate the trade-offs among policy 

choices, ecosystem service valuation must examine the marginal improvement in ecosystem 

services attributable to a policy change. For example, Isely et al. (2018) estimated that a $10 

million investment to restore the Muskegon Lake Area of Concern would have a return on 

investment of approximately 6:1 and an added $50 million in environmental value over a 20-year 

period due to increased property values and a more attractive recreational environment. Although 

extensive resources and capital are required to conduct ecosystem service valuation, the outcome 

of such an exercise places a premium on the communication of policy trade-offs in economic terms 

(commercial goods/services or non-market values such as the average consumer’s willingness to 

pay), thereby increasing stakeholder engagement and societal relevance of conservation actions 

(Egoh et al., 2007). 
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Figure 10: (a) Benefits accrued resulting from costs invested in an environmental restoration project. At the 

beginning of each restoration effort, the total returns and benefits are typically commensurate with the costs and 

investments, but this pattern may not hold true after a certain point, where we get diminishing (and ultimately 

negative) returns and marginal benefits. (b) Breakdown of Lake Erie’s ecosystem services using the Total Economic 

Value framework. 
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Economic values of ecosystem services can help policy-makers determine the optimal 

degree of investment and action needed at each time step by defining the monetary trade-offs from 

different courses of management action (Fig. 10a). At the beginning of each restoration effort, the 

total returns and benefits are typically commensurate with the costs and investments, but this 

pattern may not hold true after a certain point, where we get diminishing (and ultimately negative) 

returns and marginal benefits. Viewed it from this perspective, the question arising is how likely 

is to experience environmental improvements proportional to the socioeconomic investments 

required (steep linear segment in Fig. 10a), given the presence of a wide array of feedback loops, 

ecological unknowns, and external factors (i.e., internal loading, dreissenid mussels, different 

trends between TP and DRP loading, changing climate and increased frequency of extreme events) 

in Lake Erie? Even more so, our analysis also highlighted an additional layer of complexity that 

we need to factor in during the decision making process; namely, as we opt for drastic (and likely 

more costly) management actions that differ significantly from the current conditions (right end of 

Fig. 10a), the forecasting error increases significantly (Figs. S2c,d) and so does the likelihood of 

realizing benefits that are distinctly lower than our original investments. Do we have enough 

leeway to keep the investments to the environment going? While these assertions seem to paint a 

pessimistic picture about the challenges and associated risks with the next steps in Lake Erie, it is 

important to delve into (somewhat underappreciated) ideas, such as the total economic value (TEV) 

of an ecosystem, the degree of our knowledge of the monetary value of ecosystem services in Lake 

Erie, and the mismatch between the scales where environmental goals are being set and the 

spatiotemporal domain that predominantly influences the perception of the public (Ramin et al., 

2018; Kim et al., 2018b).  

 To facilitate ecosystem service valuation, the total economic value framework can relate 

a wide array of ecosystem services to human well-being in monetary terms (Fig. 10b). Direct use 

values are derived from the uses made of Lake Erie’s resources and services, such as drinking 

water and the natural environment for recreation, while indirect use values are associated with 

Lake Erie’s natural functions, such as nutrient removal and ability to provide fish habitat, refugia, 

and nursery (Gilpin, 2000). TEV typology also helps to identify non-use values that are unrelated 

to present or future uses, but instead reflect the value associated with the Lake Erie’s existence: 

option, bequest, and existence values (Gilpin, 2000). Option value is the willingness to pay a 

certain amount today to ensure the available use of a benefit provided by Lake Erie in the future. 

Bequest value refers to the willingness-to-pay to preserve Lake Erie for the benefit of other people, 
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both in the present and future. Existence value is the value attached to knowing that Lake Erie and 

its benefits exist, even if the individual does not intend to ever actively use them. The Great Lakes, 

including Lake Erie, provide a wide array of ecosystem services, although they have yet to be 

comprehensively inventoried (Steinman et al., 2017). Efforts have been underway to rigorously 

assess the status of ecosystem services and facilitate future valuation studies in Lake Erie. Allan 

et al. (2017) mapped the distribution of ecosystem services in the Lake Erie basin, while Annis et 

al. (2017) delineated optimal areas for the conservation of multiple ecosystem services in the 

nearshore zone of western Lake Erie. 

In this context, research on ecosystem service valuation in Lake Erie has concentrated in 

water quality improvements, erosion risk reduction, recreation, and recreational fishing (see Table 

S3 for details on the methods used for these valuation studies). Brox et al. (1996) conducted a 

contingent valuation survey to estimate a willingness to pay of $4.50 per household per month 

(19% of the average water bill) for residential water quality improvements. Likewise, Kriesel et 

al. (1993) found that the closer a lakefront property was to Lake Erie, the more the homeowner 

was willing to pay for to reduce risk of damage from shoreline erosion. Building upon this finding, 

Dorfman et al. (1996) predicted that owners of high-risk properties would pay an average of 

$37,826 to effectively eliminate erosion risk, a fairly high amount given that the average selling 

property price in the study sample was $127,800 at that time. To estimate the value of reducing 

beach advisories in Lake Erie, Murray and Sohngen (2001) surveyed visitors at 15 Lake Erie 

beaches in the summer of 1998 and estimated the average seasonal benefits of reducing one 

advisory to be $28 per visitor per year, while Chen (2013) recently projected that day trips to a 

public Great Lakes beach (including Lake Erie) was valued at $32-39 per visitor. Importantly, 

Palm-Forster et al. (2016) estimated that a full-season closure for a single public beach in Lake 

Erie would result anywhere from $1.96 to $2.21 million depending on the valuation method used. 

Along the same line of evidence, Hayder and Beauchamp (2014) estimated that in 2018, the Great 

Lakes (including Lake Erie) provided approximately $7.76 billion in recreational benefits 

(recreational boating, wildlife viewing, and beach and lakefront use) and that value would increase 

to $354 billion in 2068. In the same context, Kelch et al. (2006) found that angling in Lake Erie 

was valued at $36-46 per trip and also showed that an annual $0.6 million stocking program could 

result in a river steelhead fishery of $12-$15 million per year in Ohio. Sohngen et al. (2015) 

estimated that angling trips in Lake Erie could be valued up to $88 per trip or $67.1 million per 

year, if we also consider the value of fish catches, and Wolf et al. (2017) estimated that a wide-
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scale, summer-long algal bloom in Lake Erie would reduce fishing licenses issued by 3,600 and 

fishing expenditures by $2.25-5.58 million. 

 

Figure 11: Relationships among human actions, water quality changes, multiple ecosystem goods and services, and 

associated changes in values in Lake Erie. The proposed addition of a socioeconomic component to the existing 
integrated watershed-receiving waterbody models will allow the rigorous evaluation of conservation actions and 

identification of options that allocate financial incentives cost-effectively by funding practices with high predicted 

environmental benefits per dollar invested. 

Ecosystem service valuation can facilitate the active involvement of stakeholders and allow 

for new insights and knowledge to be passed into the decision-making process. This can be 

particularly helpful in Lake Erie given its complex ecology and diverse stakeholder groups with 

divergent goals, priorities, and values (Egoh et al., 2007). Integrating scientific knowledge with 

ecosystem service values can promote knowledge co-production and co-learning among technical 

experts, stakeholders, and decision-makers (Laniak et al., 2013). Fortunately, the wealth of 

watershed and aquatic ecosystem models in Lake Erie offer an excellent foundation upon which 

relationships among human actions, water quality trends, multiple ecosystem goods and services, 

and associated changes in values can be depicted (Fig. 11). A characteristic example of the insights 

that could be gained by such an integrated modelling framework was the study presented by Roy 

et al. (2010, 2011), which examined the likelihood to find an optimal balance between the 

conflicting interests of two societal groups, “food producers” and “recreational water users”, in 
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Sandusky Bay. The latter group includes coastal homeowners, recreational lake users, and local 

firms that serve recreational lake users, whereas the former represents agricultural operations that 

generate revenues by activities that increased lake eutrophication. The proposed addition of a 

socioeconomic component to the existing integrated watershed-receiving waterbody models will 

allow the rigorous evaluation of conservation actions and identification of options that allocate 

financial incentives (direct payments, tax credits, insurance, and stewardship certification benefits) 

cost-effectively by funding practices with high predicted environmental benefits per dollar 

invested (Palm-Forster et al., 2016). 

Consistent with our criticism regarding the skill assessment of the existing modelling work 

against aggregated spatiotemporal (seasonal/annual, basin- or lake-wide) resolution, we also 

question the adequacy of the coarse scales selected to establish nutrient loading targets and water 

quality indicators in Lake Erie (Scavia et al., 2016b,c). This strategy is neither reflective of the 

range of spatiotemporal dynamics typically experienced in the system nor does it allow to evaluate 

our progress with ecosystem services at the degree of granularity required to assess the public 

sentiment. It would seem paradoxical to expect a single-valued standard, based on monitoring and 

modelling of offshore waters, to capture the water quality conditions in nearshore areas of high 

public exposure (e.g., beaches). The degree of public satisfaction is primarily determined by the 

prevailing conditions at a particular recreational site and given date, and not by the average water 

quality over the entire basin (or lake) and growing season. In our view, the problems with the 

outdated practice to basing the water quality assessment on the offshore zone with a coarse time 

scale are twofold: (i) we cannot effectively track the progress with the response of the system, as 

it is not clear to what extent an incremental improvement in the open waters is translated into 

distinct changes in the nearshore; and (ii) the environment targets and decisions are implicitly 

disconnected with our aspiration to protect ecosystem services and gauge public satisfaction at the 

appropriate resolution. In the context of adaptive management implementation, we believe that the 

critical next steps involve the determination of appropriate metrics and scales of expression along 

with the design of a monitoring program that will allow to effectively track the progress of the 

system in both time and space (Table S2). Depending on the ERI considered, there are different 

areas for future augmentation in order to more comprehensively monitor the response of Lake Erie. 

In particular, the assessment of the trophic status may be more appropriate to revolve around 

extreme (or maximum allowable) phytoplankton or TP levels and must explicitly accommodate 

all the sources of uncertainty by permitting a realistic frequency of violations (Arhonditsis et al., 
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2016; Kim et al., 2018b). Rather than any type of data averaging, we advocate the assessment of 

compliance against the proposed probabilistic criteria using daily snapshots collected regularly 

from different sites during the growing season. The development of the “cyanobacteria index” is 

certainly useful, but given the technical limitations of the satellite images, we also need other cHAB 

proxy variables that will be collected regularly from the system, including toxins (e.g., 

Microcystin-LR). The established thresholds for drinking water (1.5 μg L-1) and recreational 

purposes (20 μg L-1) offer easily defensible targets to track the frequency of compliance of Lake 

Erie in time and space. Regarding the hypoxia and Cladophora ERIs, given our limited 

mechanistic and quantitative understanding of the primary driving factors, we also propose the 

development of systematic records for variables that represent direct causal factors of the actual 

problem, such as phosphorus content in the Cladophora tissues, characterization of the organic 

matter and phosphorus fractionation in the sediments, are the most prudent strategy to move 

forward. 
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6 Conclusions 

With a wealth of models developed, the next steps of the modelling enterprise should be 

strategically designed to serve the aspiration of a sustainable resource management in Lake Erie. 

Rather than “reinventing the wheel” by building new models that bear significant similarity to the 

ones that are already in place (Mooij et al., 2010), it is critical to craft augmentations that will 

effectively complement the existing work. In particular, the presence of multiple SWAT 

applications provides assurance that a wide array of physical, chemical, and biological processes 

with distinct characterizations are considered to reproduce the patterns of flow and nutrient export 

in agricultural settings, like the Maumee River watershed. While there are models with 

mechanistically more advanced representation of certain facets of the hydrological cycle (surface 

runoff, groundwater and sediment erosion) or better equipped to depict urban environments (e.g., 

MIKE SHE, SWMM), we believe that greater insights will be gained by revisiting several 

influential assumptions (tile drainage, fertilizer/manure application rates, LULC data) and 

recalibrating the existing applications to capture both baseline and event-flow conditions and daily 

nutrient concentration (not loading) variability in multiple locations rather than a single 

downstream site. Of equal importance is to redesign the land-use management scenarios to 

accommodate recent conceptual and technical advancements of the life-cycle effectiveness of 

various BMPs, the variability in their starting operational efficiency, and differential response to 

storm events or seasonality. One of the focal points should also be the role of legacy P along with 

the hydrological and biotransformation mechanisms that modulate DRP loading trends. The 

assessment of the flow-concentration patterns for N species and the characterization of processes 

associated with the nitrogen cycle are still missing in the Lake Erie basin, even though nitrogen 

could be one of the regulatory factors of the downstream water quality conditions; especially the 

composition of the algal community. Coupled with the mechanistic tools for the Maumee River 

watershed, empirical (SPARROW-like) models geared to depict basin-specific (rather than 

continental or regional) nutrient loading conditions can offer a multitude of complementary 

benefits, such as validate the spatial delineation of hot-spots with higher propensity for nutrient 

export, narrow down the uncertainty of processes/fluxes parameterized by mechanistic models, 

and obtain predictive statements constrained within the bounds of data-based parameter estimation. 

Counter to the watershed modelling framework for the Maumee River watershed, the 

multi-model approach for Lake Erie included both data-oriented and process-based models to 

examine the ERI achievability under different nutrient loading conditions. The former models 
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(UM-GLERL and NOOA Western Basin HAB models) established causal linkages between cHAB 

proxies and external phosphorus loading. Their foundation upon statistical parameter estimation 

allows for rigorous predictive uncertainty assessment, and thus they represent a pragmatic means 

to draw forecasts regarding the severity of cHABs. Two critical next steps to further augment the 

empirical modelling work is the iterative updating as more data are acquired through monitoring 

and the introduction of other predictors that likely favor the occurrence of cyanobacteria-

dominated blooms. After all, while the availability of phosphorus may hierarchically be one of the 

primary conditions for cyanobacteria dominance, there are several other factors (e.g., nitrogen, 

iron, light availability, water column stability, and water temperature) that can ultimately 

determine the winners of the inter-specific competition within the phytoplankton assemblage 

(Kelly et al., 2018). Because the majority of the process-based models (ELCOM-CAEDYM, 

WLEEM, EcoLE) are far from being constrained by the available data, their primary use has been 

(and should continue to be) as heuristic tools to advance our understanding of the lake functioning 

(e.g., potential role of dreissenids, relative importance of meteorological forcing vis-à-vis nutrient 

availability on the severity of hypoxia), whereas their predictive power is still under question.  

With respect to the load-response curves presented by Scavia et al. (2016a,b), the 

forecasting exercise related to the overall summer phytoplankton biomass in the western basin has 

a lot of potential to assist the local management efforts. The next augmentations should focus on 

the development of more reliable empirical model(s) that will connect chlorophyll a with a suite 

of significant predictors, and the advancement of the representation of several factors that could 

modulate the phytoplankton response to external nutrient loading reductions, such as the degree of 

reliance of phytoplankton growth upon internal nutrient sources (e.g., microbially mediated 

regeneration, P loading from the sediments), or the strength of top-down control. The coupling of 

empirical and process-based models to predict the cHAB likelihood of occurrence under reduced 

loading conditions offers a robust foundation to evaluate competing hypotheses and advance our 

knowledge on the suite of factors that may trigger cyanobacteria dominance in Lake Erie. It is 

important to recognize though that the reported range of cumulative Maumee March–July annual 

loads of 1679–2170 MT for achieving the cHAB target is likely narrow and does not capture the 

actual uncertainty with this ERI. We also remain skeptical with the optimistic projections of the 

extent and duration of hypoxia, given our limited knowledge of the sediment diagenesis processes 

in the central basin and the lack of data related to the vertical profiles of organic matter and 

phosphorus fractionation or sedimentation/burial rates. Without this piece of information is 
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practically impossible to quantitatively characterize feedback loops of elevated internal loading 

and sediment oxygen demand, even when the prevailing conditions in the water column are 

improved, and thus offer strategic foresights into the likelihood to experience a delayed response 

of the sediments to reduced nutrient loading. It is important to keep in mind that one of the pillars 

of adaptive management is resilience thinking by monitoring existing problems, highlighting 

emerging threats, and redefining the research agenda (Johnson et al., 2013; Cook et al., 2014). In 

terms of the beach fouling by Cladophora blooms, the current modelling efforts have been 

insightful but further enhancement of their predictive value requires a high-resolution study of the 

northeastern nearshore zone to elucidate the relationships among abiotic conditions, internal P 

content, and sloughing rates in the local mats.  

From a management standpoint, it is important to note that the complex mechanistic 

models are an absolutely worthwhile activity and will continue to assist the on-going management 

efforts in a meaningfully way. Consistent with Anderson’s (2006) views, we believe that prediction 

is not everything. Even if the structure of complex mathematical models reduces their predictive 

power or even the ability to conduct rigorous uncertainty analysis, they still offer excellent 

platforms to gain insights into the direct, indirect, and synergistic effects of the ecological 

mechanisms forming the foundation of system behavior (Arhonditsis, 2009). For example, the 

virtual 3D environment created by ELCOM-CAEDYM and/or WLEEM can offer a convenient 

platform to reconcile the coarse-scale (practically offshore) predictions, required to assess the ERI 

achievability, with the granularity that necessitates to elucidate nearshore processes and associated 

ecosystem services. Even more so, their dynamic integration with the watershed modelling 

framework will allow to trace the fate of nutrients and suspended solids transported by the Maumee 

River (and other major tributaries), and generate hypotheses about their impact on the timing and 

locations where structural shifts in the algal assemblage may occur. Furthermore, being an integral 

part of the iterative monitoring-modelling-assessment cycles, the foundation of the mechanistic 

modelling work in Lake Erie can be optimized through reduction of the uncertainty of critical 

ecological processes or refinement of their structure (e.g., mathematical reformulation of highly 

sensitive terms, exclusion of irrelevant mechanisms and inclusion of missing ones), thereby 

augmenting their ability to support ecological forecasts (Arhonditsis et al., 2007). It is thus critical 

that one of the priorities of the research agenda should be to maintain the ensemble character of 

the modelling work in Lake Erie. The wide variety of models that have been developed to 
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understand the major causal linkages/ecosystem processes underlying the local water quality 

problems are a unique feature that should be embraced and further consolidated. 

Our analysis questioned the adequacy of the coarse spatiotemporal (seasonal/annual, basin- 

or lake-wide) scales characterizing both the modelling enterprise and water quality management 

objectives in Lake Erie. More than anything else, this strategy seems somewhat disconnected from 

the ecosystem services targeted under Annex 4 of GLWQA. In the same context, we argued that 

ecosystem service valuation can facilitate the decision-making process by identifying cost-

effective restoration actions, as we track the evolution of the system over time. While adaptive 

management and ecosystem service valuation have not typically been used together in decision-

making process, they are exceptionally complementary. Both approaches assess ecological 

systems empirically and are policy-oriented as they describe management implications for 

stakeholders (Epanchin-Niell et al., 2018). To advance the operationalization of this integrative 

approach will however require greater interaction among different types of experts of methods, 

models, and data in social, economic, and environmental sciences. Applying an integrated adaptive 

management-ecosystem services framework places a premium on articulating policy trade-offs, 

and therefore has the potential to facilitate the management decisions in the face of uncertainty. 
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8 Electronic Supplement 

Additional electronic tables and graphs have been submitted as separate documents. Brief 

descriptions of contents are listed below. 

List of Figures 

Figure S1: Spatial patterns of total phosphorus (TP) and dissolved reactive phosphorus (DRP) 

loading projections (kg km-1 yr-1) from the five SWAT models (modified from Scavia et al., 2016a). 

Figure S2: March to July (a) TP and (b) DRP loading estimates based on ten BMP scenarios (see 

definitions in Table S1) in the Maumee River watershed. Seasonal loading target is 860 tonnes and 

186 tonnes for TP and DRP, respectively (red dashed lines). Predictive uncertainty of (c) TP and 

(d) DRP loads across the five SWAT models based on the relationship between the mean loading 

projections and the coefficient of variation (CV) values. For the purposes of our illustration, we 

used a simple definition of the uncertainty envelope, i.e., the standardized forecasting spread, 

which was approximated by the degree of divergence among the five SWAT applications divided 

by their corresponding averaged prediction for a given BMP scenario. The same negative 

relationship between forecasting spread and mean predicted loading also holds true without the 

standardization of the Y axes.  

Figure S3: (a) Predicted average summer chlorophyll a concentrations in the western basin of 

Lake Erie as a function of the corresponding annual TP load. Each response curve has been scaled 

to 100% at its maximum chlorophyll value to facilitate comparisons. The dashed line represents a 

40% reduction from the 2008 annual load in the western basin. (b-d) Cyanobacteria bloom size as 

a function of spring Maumee River TP load as predicted from the NOAA Western Lake Erie HAB 

model (b), the U-M/GLERL Western Lake Erie HAB model (c), and WLEEM (d). Solid lines are 

mean model predictions, dashed lines and shaded areas represent 95% predictive intervals, while 

the 70% predictive intervals are also included in (b). The horizontal line indicates the threshold for 

“severe” blooms, which equals 9600 MT for the first two models and was adjusted to an equivalent 

of 7830 MT for WLEEM. (e) August-September average hypolimnetic DO concentrations in the 

central basin as a function of the annual TP loading collectively added into the western and central 

basin of Lake Erie. The horizontal line represents the average concentration (4 mg DO L-1) 

corresponding to initiation of statistically significant hypoxic areas. (f) Predicted Cladophora 

biomass, and associated 5th and 95th percentiles, by the coupled ELCOM-CAEDYM-EBC in the 

northern shoreline of the eastern basin as a function of whole lake annual TP loads. (All panels are 

modified from Scavia et al., 2016b). 

Figure S4: Comparison between TP loading predictions of SPARROW (left) and observed 

baseflow index (right). Low (high) index values suggests higher (lower) likelihood of surface 

runoff which in turn can lead to higher (lower) suspended solid and particulate phosphorus loads. 

Figure S5: (a) Areal nutrient balance for USA and Canada, where dotted lines indicate cumulative 

P inputs of fertilizer and manure and dashed line represent P uptake by crops (Bouwman et al., 

2013); (b) areal nutrient balance for Ontario, Canada, with estimated P accumulation in soil for 

1973-2013 (International Plant Nutrition Institute, 2014); (c) scatterplot of reported BMP 
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effectiveness for SRP and TP for filter strips and conservation tillage (Gitau et al., 2005), where 

negative values indicate that the BMP acts as a P source; and (d) and (e) illustrate the probability 

distributions of BMP effectiveness on SRP and TP reduction for reduced tillage and wetland 

restoration, respectively (Igras, 2016). 

List of Tables 

Table S1: Description of the different model scenarios, categorized based on the policy 

questions they were intended to address. 

Table S2: Knowledge gaps and sources of uncertainty to guide monitoring and improve modelling 

in Lake Erie. 

Table S3: Research on ecosystem service valuation concentrated on water quality improvements, 

erosion risk reduction, recreation, and recreational fishing in Lake Erie.  
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Figure S1 
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Table S1: Description of the different model scenarios, categorized based on the policy questions they 

were intended to address (modified from Scavia et al., 2016). 

Number of 

Scenarios 
Name Description Policy question 

S1 
Nutrient management at 

25% random adoption 

25% of row crop acreage was randomly 

chosen and the following practices were 

applied: a 50% reduction in P fertilizer 

application, fall timing of P applications, 

and subsurface placement of P into the 

soil. 

What level of nutrient 

management will be 

sufficient to reach 

phosphorus targets? 

S2 
Nutrient management at 

100% adoption 

The following practices were applied to 

100% of row crop fields throughout the 

watershed: a 50% reduction in P 

fertilizer application, fall timing of P 

applications, and subsurface placement 

of P into the soil. 

Can nutrient 

management alone 

achieve targets? 

S3 

Commonly 

recommended practices 

at 100% random adoption 

Four practices were applied to a separate 

25% of the crop fields: a 50% reduction 

in P fertilizer application, subsurface 

application of P fertilizers, continuous 

no tillage, and medium-quality buffer 

strips. 

What extent of 

adoption of commonly 

recommended practices 

will be needed to 

achieve the targets? 

S4 

Continuous no-tillage 

and subsurface 

placement of P fertilizer 

at 50% random adoption 

50% of row crop acres were randomly 

chosen to apply a combination of 

continuous no-tillage and subsurface 

application of P fertilizers. 

Is no-tillage effective 

provided P is applied 

below the soil surfaces? 

S5 

Cropland conversion to 

grassland at 10% (5a), 

25% (5b), and 50% (5c) 

targeted adoption 

In this set of three scenarios, 10%, 25%, 

and 50% of the row croplands with the 

lowest crop yields and greatest TP losses 

were converted to switchgrass and 

managed for wildlife habitat with limited 

harvesting for forage and no P 

fertilization. 

How much row 

cropland 

would be needed to be 

converted to grassland 

to achieve the targets? 

S6 
Series of practices at 

50% targeted adoption 

A series of practices were targeted to the 

50% of row cropland with the highest 

TP loss in the watershed. 

Practices: subsurface application of P 

fertilizers, cereal rye cover crop in the 

winters without wheat, and application 

of medium-quality buffer strips. 

What extent of targeted 

infield and edge-of-

field practices reach the 

targets? 
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Table S1 (Continued): Description of the different model scenarios, categorized based on the policy 

questions they were intended to address. 

Number of 

Scenarios 
Name Description Policy question 

S7 
Series of practices at 

50% random adoption 

A series of practices were applied at 

random to 50% of row cropland. 

Practices: subsurface application of P 

fertilizers, cereal rye cover crop in the 

winters without wheat, and application 

of medium-quality buffer strips. 

What if in-field and 

edge-of-field practices 

were applied at 

random? 

S8 
Diversified rotation at 

50% random adoption 

An alternative corn-soybean-wheat 

rotation with a cereal rye cover crops all 

winters without wheat was applied over 

a randomly chosen 50% of row 

cropland. 

What is the impact of 

returning to winter 

wheat and winter cover 

crops? 

S9 
Wetlands and buffer 

strips at 25% targeted 

adoption 

Wetlands were targeted to the 25% of 

sub-watersheds with the greatest P 

loading and assumed to intercept half of 

overland and tile flow, and medium-

quality buffer strips were targeted to the 

25% of row crop acreage responsible for 

the greatest TP loss. 

How much P reduction 

can be achieved 

through structural 

practices? 

S10 
In-field practices at 25% 

random adoption 

A group of four in-field practices was 

applied to a random 25% of row 

cropland. Practices included a 50% 

reduction in P fertilizer application, fall 

timing of P applications, subsurface 

placement of P fertilizers, and a cereal 

rye cover crop. 

What can be achieved 

at 25% application of 

in-field practices? 
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Table S2: Knowledge gaps and sources of uncertainty to guide monitoring and improve modelling in Lake Erie. 

Knowledge gaps 

Phytoplankton  Winter productivity under ice needs to be further examined to establish the causal linkages with spring 

phytoplankton dynamics and summer hypoxic conditions.  

Cyanobacteria /HABs  Increased SRP loading since mid-1990s appears to correlate with more frequent and severe HABs. 

Accurate fractionation of exogenous phosphorus loads (i.e., bioavailability) is needed to confirm the 

relationship with algal blooms.  

  Regular monitoring of cyanotoxin data (Microcystin-LR) in the nearshore zone. 

  Quantitative characterization of the selective rejection of cyanobacteria by dreissenids 

Hypoxia  It is critical to understand the intensive microbiological, geochemical, and physical processes occurring 

within the top few centimeters of the sediment and determine the fraction of organic matter and nutrients 

released into the overlying water. Field, experimental (e.g., porewater analysis, phosphorus fractionation, 

organic matter profiles), and modelling (e.g., primary and secondary redox reactions, mineral 

precipitation dissolution reactions, acid dissociation reactions, and P binding form reactions) work 

should be designed to shed light on the mechanisms of organic matter mobilization in the sediments and 

to identify process controls under a variety of conditions. 

Dreissenids  Empirical information on selective rejection of cyanobacteria by dreissenids and revisit the mathematical 

representation of dreissenid feeding accordingly. 

  Empirical data on the spatial distribution of zebra and quagga mussels is needed, since the two species 

differ significantly with regard to filtration and excretion rates. 

  Empirical data on the year-to-year variability of dreissenid population density and size distribution is 

critical to realistically predict their impact on water quality. 

  The role of dreissenids on N mineralization and the modification of the N:P ratios remains understudied 

Cladophora  Local modelling efforts in Lake Erie will greatly benefit from a high-resolution monitoring of the 

nearshore zone to establish the causal linkages between the abiotic conditions (e.g., phosphate, light, 

temperature) in the surrounding environment and the internal P content and sloughing rates in 

Cladophora mats. 
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Sediment-related processes  Empirical information is needed to distinguish the relative importance of oxic and anoxic release of P 

from the sediments in the western basin of Lake Erie in order to validate model predictions. 

  Empirical information is needed to quantify the contribution of particulate matter resuspension to the P 

concentrations in the water column (all models except WLEEM do not consider this process separately 

from P chemical release). 

 

Refinement of monitoring framework  

  Monitoring programs should be extended until the end of September to obtain a better characterization of 

hypoxia, given that the maximum hypoxic area in the nearshore zone has been projected to occur in 

September (Bocaniov and Scavia, 2016). 

  Monitoring programs should target nearshore areas, which occupy a significant portion of the area of the 

central basin and represent an important habitat for many aquatic species as well as a source of drinking 

water (Bocaniov and Scavia, 2016). 

  Whole-year phytoplankton and zooplankton sampling to quantitatively characterize the seasonal 

succession patterns, as well as the likelihood of top-down control. 
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Table S3: Research on ecosystem service valuation concentrated on water quality improvements, erosion risk reduction, recreation, and 

recreational fishing in Lake Erie.  

Method Data requirements Advantages Notes / Limitations Examples in 

Lake Erie 

Hedonic valuation 

(revealed preference): 
assumes that the value 

individuals place on a 

commodity is based on the 

attributes it possesses.  

Detailed information on: 

 Property market prices 

 Individual property 

characteristics 

 Distance from 

environmental attributes 

 

 Based on observed behaviour in 

property values 

 Property market should be near-equilibrium 

with an appropriate size and coverage 

 Assumes that buyers have complete 

knowledge about environmental attributes 

 Difficult to isolate the effects of the 

environmental attribute on property value 

Dorfman et al. 

(1996); Kriesel et 

al. (1993) 

Travel-cost valuation 

(revealed preference): 

rationalizes that the value of 

a site is reflected in the 

willingness-to-pay the 

associated travel cost. 

Detailed information on: 

 Individual travel costs 

 On-site expenses 

 License fees (if 

applicable) 

 Capital expenditure on 

recreational equipment 

(if applicable) 

 Value of time spent 

travelling 

 Socioeconomic 

characteristics of users 

 Based on observed behaviour 

 

 Travel distances are ideally relatively short, 

and sample has a variety of distances, costs 

and socioeconomic characteristics 

 Can be confounded if the visit is not intended 

for the specific ecosystems service (i.e., trip 

made for multiple destinations) 

 Assumes that users have complete 

knowledge about the ecosystem service 

being used 

 Cannot value ecosystems that are not visible 

or well understood (e.g., nutrient cycling, 

erosion control) 

Chen (2013); 

Hushak et al. 

(1988); Kelch et al. 

(2006); Murray et 

al. (2001); 

Sohngen et al. 

(1999); Sohngen et 

al. (2015) 

Contingent valuation 

(stated preference): uses a 

context of a hypothetical 

market in which individuals 

report about their 

willingness-to-pay for 

ecosystem services (for 

which markets do not exist) 

through questionnaires 

and/or interviews.  

Detailed information on: 

 Ecosystem 

characteristics/function 

 Socioeconomic 

characteristics of 

respondents 

 

 Can be used to value almost all 

environmental attributes (i.e., 

ecosystem services without 

markets or parallel markets) 

 

 Tend to be cost and time intensive to 

implement 

 Biases are common in survey responses due 

to hypothetical nature of the market 

 Low income constrains willingness-to-pay 

for ecosystem services 

Brox et al. (1996); 

Kreutzwiser 

(1981) 

Benefit value transfer 

(benefits transfer): 

estimates values by 

transferring values from a 

 Primary valuation results 

for a site similar to target 

site 

 More cost and time effective than 

primary valuation studies 

 Recommended to be used to scope 

if a more in-depth primary 

valuation study is required  

 Estimates from primary studies can be 

outdated 

 Results tend to be less accurate than primary 

studies since estimates are unlikely to be 

perfectly transferable 

Hayder (2014); 

Palm-Forster et al. 
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primary valuation study 

conducted for a similar site.  

(2016); Wolf et al. 

(2017) 

Benefit function transfer 

(benefits transfer): adjusts 

for differences in the 

characteristics of the 

population/site between the 

primary study and target 

sites. The result is more 

relevant to the targeted site. 

 Primary valuation results 

for a site similar to target 

site 

 Detailed site and 

population characteristics 

for both the primary 

study and target sites 

 More cost and time effective than 

primary valuation studies 

(although requires more resources 

than benefit value transfers) 

 Recommended to be used to scope 

if a more in-depth primary 

valuation study is required  

 Estimates from primary studies can be 

outdated 

 Results tend to be less accurate than primary 

studies since estimates are unlikely to be 

perfectly transferable (although result is 

more robust than benefit value transfer) 

Palm-Forster et al. 

(2016) 
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