Potential Effects of Climate Change in the Kootenay Lake Basin

Chris Frans, Ph.D.

U.S. Army Corps of Engineers, Seattle District

International Kootenay Lake Board of Control Meeting September 22, 2016

Overview

- Current studies are in progress to assess hydrologic impacts of climate change
- Climate change will likely bring higher unregulated winter flows during the drawdown period on Kootenay lake
- Projected changes in peak spring freshet flows are more uncertain

Atmospheric CO₂

Emissions Scenarios

Scenarios developed by Intergovernmental Panel on Climate Change (IPCC):

RCP8.5

"Business as usual", rising currently surpassing this rate

RCP6.0

Peak at ~2080, Stabilization after 2100

RCP4.5

Peak at ~2050, Stabilization after 2100

RCP2.6

Near term peak, decline to net negative emissions

Presently no technology to make feasible

Image: Sanford, Todd, et al. "The climate policy narrative for a dangerously warming world." *Nature Climate Change* 4.3 (2014): 164-166.

Emissions Scenarios: Warming

Climate Impacts Modeling Chain

Hydrologic Impact Assessment Process

Global Climate Models

Downscaling

statistical, psuedo-dynamical, dynamical techniques

Hydrological Models

Regulation Models

Potential Changes to the Hydrology of Kootenay Lake

Median Precipitation Change Projected for the 2050s

Median Temperature Change Projected for the 2050s

PACIFIC CLIMATE IMPACTS CONSORTIUM

 Δ 1°C = Δ 1.8°F

 $\Delta 2^{\circ}C = \Delta 3.6^{\circ}F$

 $\Delta 3^{\circ}C = \Delta 5.3^{\circ}F$

 $\Delta 4^{\circ}C = \Delta 7.1^{\circ}F$

WY 2015, a trial run of the future?

WY 2015: British Columbia

https://pacificclimate.org/sites/default/files/publications/2015_Year_in_Review-Final.pdf

GCM Data Source: http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/ Maurer, E. P., L. Brekke, T. Pruitt, and P. B. Duffy (2007), 'Fine-resolution climate projections enhance regional climate change impact studies', *Eos Trans. AGU, 88*(47), 504.

Observed Data Source:

Livneh B., T.J. Bohn, D.S. Pierce, F. Munoz-Ariola, B. Nijssen, R. Vose, D. Cayan, and L.D. Brekke, 2015: A spatially comprehensive, hydrometeorological data set for Mexico, the U.S., and southern Canada 1950-2013, Nature Scientific Data, 5:150042, doi:10.1038/sdata.2015.42.

Temperature Sensitivity

Projected Kootenay River Unregulated Flow

Blue = 1916-2006

Pink = Range (10 models) Red = Ensemble Mean

Hamlet, Alan F., et al. "An overview of the Columbia Basin Climate Change Scenarios Project: Approach, methods, and summary of key results." *Atmosphere-ocean* 51.4 (2013): 392-415.

Projected Kootenay River Unregulated Flow

Blue = 1916-2006

Pink = Range (10 models) Red = Ensemble Mean

Hamlet, Alan F., et al. "An overview of the Columbia Basin Climate Change Scenarios Project: Approach, methods, and summary of key results." *Atmosphere-ocean* 51.4 (2013): 392-415.

Projected Kootenay River Unregulated Flow

Blue = 1916-2006

Pink = Range (10 models) Red = Ensemble Mean

Hamlet, Alan F., et al. "An overview of the Columbia Basin Climate Change Scenarios Project: Approach, methods, and summary of key results." *Atmosphere-ocean* 51.4 (2013): 392-415.

Ongoing climate change studies in the basin:

(Hydrology and Hydro-regulation modeling)

RMJOC-II 2015-2018

BChydro Study

Summary

- Current studies are in progress to assess hydrologic impacts of climate change
- Climate change will likely bring higher unregulated winter flows during the drawdown period on Kootenay lake
- Higher uncertainty in changes in projections of peak spring freshet flows

