

Technical Note NT-120

LOSLR – IERM habitat models recoding

Sylvain Martin, Guillaume Guénard, Jean-Michel Fiset, and

Jean Morin

March 2017

No de cat. : xxx

ISBN : xxx

For citation:

Martin, S., G. Guénard, J.-M. Fiset, and J. Morin. (2017). LOSLR – IERM habitat models recoding.
Technical Note NT-120, MSC Québec – Hydrology and Ecohydraulic Section, Environment and
Climate Change Canada, Québec, prepared for the International Joint Commission study on Lake
Ontario and Saint-Lawrence River. 12 pages + Appendix.

Unless otherwise specified, you may not reproduce materials in this publication, in whole or
in part, for the purposes of commercial redistribution without prior written permission from
Environment and Climate Change Canada's copyright administrator. To obtain permission to
reproduce Government of Canada materials for commercial purposes, apply for Crown Copyright
Clearance by contacting:

Environment and Climate Change Canada

Public Inquiries Centre

7th Floor, Fontaine Building

200 Sacré-Coeur Boulevard

Gatineau QC K1A 0H3

Telephone: 819-997-2800

Toll Free: 1-800-668-6767 (in Canada only)

Email: ec.enviroinfo.ec@canada.ca

Photos: © Environment and Climate Change Canada

© Her Majesty the Queen in Right of Canada, represented by the Minister of Environment
and Climate Change, 2016

mailto:ec.enviroinfo.ec@canada.ca

iii

Work team

Environment and Climate Change Canada – Meteorological Service of
Canada – Hydrology and Ecohydraulic Section

Project management

Sylvain Martin, M.Sc.

Jean Morin, Ph.D.

Programming, data management, and redaction

Sylvain Martin, M.Sc.

Guillaume Guénard, Ph.D.

 Jean-Michel Fiset, Jr. Eng.

iv

Table of contents

WORK TEAM .. III

TABLE OF CONTENTS ...IV

FIGURES .. V

INTRODUCTION - PROBLEM STATEMENT AND PROPOSED SOLUTION 1

PROJECT MILESTONES ... 3

PI re-designing and recoding ..3
Object-oriented classes re-design and PIs recoding to Python ... 3
Global results management .. 5
Coordination of execution ... 5

Recoding programs supporting models ...5
Improving new time series integration ... 5

Water levels and discharge time series insertion and update .. 5
Inter-annual quarter-monthly average discharge graphs ... 6
Time series statistical preliminary check (pre-check) analysis ... 7

Improving results output .. 9
Spatial data output ... 9
Global results output ... 9

Code isolation and structuration..9

CONCLUSION .. 11

APPENDIX ... 1312

Appendix 1 – Habitat models data comparison ... 1312

Appendix 2 – Repository structure description .. 1413

v

Figures

Figure 1 : Object-oriented schematics describing the new habitat models
implementation. The child class ModeleSpecic inherits (purple arrow) attributes
and functions from the parent class ModeleHabitat. The resulting consolidation
contains datasets like GrilleMIRE, SerieTempo, Vagues, and FreqVents (green
arrows). ... 4

Figure 2 : Inter-annual quarter-monthly average discharge at Sorel for three time
series (HDD: blue, HBV7: green, and HBV7a: red). .. 7

Figure 3 : PCoA graph showing the position of a new “TEST” time series (black
dot) among existing ones. ... 8

1

Introduction - Problem statement and proposed solution

The environmental performance indicators (PI) for the Lower St. Lawrence River
(IERM) are a critical component of the evaluation of water level regulation plans
for the Lake Ontario-St. Lawrence River (LOSLR) system and are important to
maintain in an adaptive management perspective. These PIs have been mainly
created, programmed and used during the Lake Ontario – St. Lawrence River
study (2000-2005) and have been used many times since then for new plan
assessment and other applications in the river. The 40 PIs are grouped in 14
different components of the ecosystem (eg. floral or faunal resources), each of
which being handled by a specific program implementing a model quantifying the
effect of discharge or water level modifications on habitat of these floral or faunal
resources (habitat models).

The Hydrology and Ecohydraulic Section of Environment and Climate Change
Canada (ECCC-HES) was the principal investigator, with several partners,
responsible for the creation, validation and the maintenance of the PIs. However,
the programing language in which they were implemented (Visual Basic.Net 2008)
is no longer used by ECCC-HES. Consequently, these PIs are rapidly becoming
obsolete and need updating. In the last 6 years, the ECCC-HES has migrated to
the Python programming language and one of the benefits of this migration is that
Python is a cross-platform language that can be executed on Microsoft®
Windows®, Linux, or any common Operating System (OS), including Canadian
Meteorological Center (CMC) operational environment. Python is a stable and well
documented open-source object-oriented programming language. Furthermore, it
is consistent with the operational requirements for the CMC supercomputers and
is going to be supported in the near future.

In this context, the ECCC-HES has been tasked to update the Lower St. Lawrence
River PIs and this report is detailing the work undertaken on code that has been
updated or created including re-designing of object-oriented programs for each
existing PI, recoding the 14 programs (habitat models) from Visual Basic.Net to
Python 2.7, including quality verification and execution coordination.

Moreover, the integration process for new discharge/water level time series (new
regulation plans), including time series pre-analysis check, coordination of the
different calculation steps, verification spatial results outputs, and global results
management are steps that are presently time consuming and has been
significantly optimized to reduce time and efforts required to achieve these tasks.
Consequently, this report also describes the creation of additional programs
aiming at enhancing the integration of new time series into the IERM internal
format, comparing new time series (among existing groups) with existing ones,
creating spatially explicit results for verification, and storing global end results in a
format consistent with the adaptive management needs.

As a consequence of the IERM models recoding project and the Python projects
repository constraints, this report will also detail the new file and folder repository
structure and its benefits for model portability to different OS.

2

The final product will be a “nearly automated system” encompassing: 1) the
integration of new time series, 2) PIs calculation, and 3) production of final results.
We expect that it will significantly speed-up execution time and minimize efforts
required to achieve the assessment of new regulation plans.

3

Project milestones

PI re-designing and recoding

Object-oriented classes re-design and PIs recoding to Python

In the former implementation of habitat model programs, functions that were
common to all models calculation were grouped in module (code file) that model
programs can use at runtime. No common function was created for data insertion
and all data necessary to run models were retrieved from a database. This last
step is time-consuming at runtime since complete datasets have to be transferred
from the database to the computer where programs are executed.

Here, a new object-oriented code design has been applied to re-implement habitat
models for the Lower St. Lawrence River PIs in Python 2.7. To achieve this, we
first created a parent class that contains functions common to all 14 models. This
parent class includes functions retrieving information from a configuration file in
order to specify the correct time series, IERM Grid, physical environmental data,
triggering data, etc. and also functions inserting global and spatially explicit data in
a database. Figure 1Figure 1 shows a schematic view of the ModeleHabitat class
(parent class) containing common functions and the ModeleSpecific class (child
class), which represents any of the 14 specific habitat models, inheriting attributes
and functions from the mother class ModeleHabitat while implementing specific
functions of a given habitat model. At runtime, the parent and the child classes are
consolidated as one object containing all attributes and functions of both classes.
Hence, any ModeleSpecific class is also a ModeleHabitat class. This behavior is
called polymorphism in object-oriented programming.

Each model having its own data needs, the consolidated class retrieves all data
listed in a model-specific configuration file, namely the IERM grid, time series,
wave input data and frequencies and hydrodynamic input data. Individual classes
have been created for each of these datasets, which integrate data locally stored
in binary files instead of retrieving them from a database, thereby saving time
involved in data access and transfer through network. At runtime, these new
classes or objects become part of habitat models. The habitat model is thus
composed with these datasets rather than inheriting from them.

Regrouping common code in a parent class improves efficiency since only a single
copy of the common functions needs to be developed and maintained.

Execution time is also improved since steps involved in requesting and retrieving
data from a database were replaced by binary data access from files located on
the computer where programs are executed.

4

Figure 1 : Object-oriented schematics describing the new habitat models implementation.
The child class ModeleSpecic inherits (purple arrow) attributes and functions from the
parent class ModeleHabitat. The resulting consolidation contains datasets like GrilleMIRE,
SerieTempo, Vagues, and FreqVents (green arrows).

In order to check whether the recoded models rendered consistent results with
respect to the former Visual Basic.Net implementation, they were tested against
time series HDD, S1DD, S2DD, HBV710, S1BV710, S2BV710, and HBV7985.
Each combination of PI model and time series, has been executed on 41 years
and results, mainly expressed as habitat surface area (hectare). They were
summed by IERM grid division and year and were compared to results from the
former implementation. Maximum differences lower than 0.005% were observed
between implementations. Maximum differences were observed for two models:
that for the least bittern and the yellow perch (0.004%). On the other hand, very
small differences were observed in the wind wave data calculation process and
they had very little impact on cattails probabilities of occurrence, especially when
they are close to the threshold values for a presence. Although differences are
very small, they may nevertheless entail noticeable changes in the habitat
surfaces predicted by models like that for the least bittern and the yellow perch
models since they use results from the cattails model as an input. As these models
are showing relatively low surface area values, a small difference in predicted
habitat surface may cause large consequences, especially when differences are
expressed as percentage.

5

Nevertheless, differences remain small and we regard the Lower St. Lawrence
River IERM habitat models implemented in Python as providing equivalent results
as their counterparts implemented in Visual Basic.Net.

Global results management

In the Visual Basic.Net version of the system, global results (ie. summation of
potential habitat predicted for a given combination of time series and year) were
retrieved after execution using SQL requests applied to database tables
warehousing results for each IERM grid points and model. This step was time-
consuming since all 14 tables had to be visited and some manual data
management was still necessary to gather and format information. In the Python
version, code has been added to habitat models and global results are calculated
while PI programs are being executed and potential habitats surface areas are
summed for each IERM grid point at runtime. Once a model has processed all
points, global results (summation) are stored in a global results database table
containing substantially less data (raw data are also stored into the database for
validation purposes). Finally, a single SQL request sent to the database allows us
to retrieve all global results for a given time series in order for them to be
compared to the ones already processed.

This additional coding substantially reduced the time and efforts involved in
gathering and managing results.

Coordination of execution

The execution has been analyzed for 14 models considering potential
dependencies among PIs and a new coordination strategy has been applied.
Following that strategy, all PIs that depend on results from either the wetlands or
the cattails model were grouped separately for execution. This two-strain re-
arrangement is meant to be executed using two processes running
simultaneously, the first beginning with the wetlands model and the second with
the cattails model.

In the former version, models were executed one after another using a single
process. Using two parallel processes instead of a single one achieved an
important improvement here in reducing computation time.

Recoding programs supporting models

Improving new time series integration

Water levels and discharge time series insertion and update

The Visual Basic.NET program formerly integrating time series provided by the IJC
into the IERM computation environment has been re-implemented in Python 2.7.
This program retrieves time series data from a text file, inserts this information into

6

a database, and updates water levels calculated at given stations along the Lower
St. Lawrence River for each time step.

The former Visual Basic.Net version of this application was doing the same work
and no improvement in execution time was noted. On the other hand, the provided
input text format may involve a short data management step since format
differences may occur between time series provided.

Inter-annual quarter-monthly average discharge graphs

Inter-annual quarter-monthly (QM) average discharge graphs are used as a
preliminary checking step prior to running models. This step allows users to
compare the new time series with others that had already been processed, namely
the HDD time series (historical inputs using the 1958DD regulation plan), which
has been used as a basis for comparison from the beginning of the LOSLR study.

Before the present re-implementation, inter-annual quarter monthly averages had
to be retrieved from the database and transferred to a spreadsheet (Microsoft®
Excel®) where graphs were manually created.

In the present version, a Python 2.7 program generates the time series
comparison graphs automatically. Averages are retrieved from a database and
graphs are created using the matplotlib Python package. Figure 2Figure 2 shows a
typical output graph of inter-annual QM average discharges at Sorel for the HDD,
HBV7, and HBV7a time series.

This step brought a notable improvement to the previous workflow since the
manual data management and graph creation steps have been automated.

7

Figure 2 : Inter-annual quarter-monthly average discharge at Sorel for three time series
(HDD: blue, HBV7: green, and HBV7a: red).

Time series statistical preliminary check (pre-check) analysis

Another program has been developed using R language embedded into Python to
statistically verify potential anomalies in newly integrated time series. This program
will be used as a pre-check step before running models in order to avoid time
spent in executing an erroneous time series. A distance metric was developed to
assess to what extent time series differ from one another. A Principal Coordinates
Analysis (PCoA) was calculated using that distance metric and used to visualize
the resemblance or difference between the existing water discharge time series.
Time series pertain on one five classes (H: Historic, S1: Stochastic 1, S2:
Stochastic 2, S4: Stochastic 4, and CC: Climatic Change). Classification software
was also implemented to compare new time series with known ones and assign
them to one of the five aforementioned classes to the new time series. Time series
that significantly differ from any of the know classes of water discharge time series
are classified as being of an unknown type. To achieve this, the program is
provided with a minimum probability threshold below which a time series is
considered as not being part of a group. New time series are considered as being
of an unknown type when not found to pertain to any known group. A PCoA
ordination diagram showing the location of the new time series with respect to
existing ones is given as an output. Users therefore have the possibility to judge,
on the basis of the discharge graph, ordination diagram, and classification results,

8

whether the new time series she or he submitted is worthwhile for further
computation. As an example, Figure 3Figure 3 shows the position of a new time
series position among all existing ones. The new time series called “TEST” is a
copy of the “HBV7” (Historic supplies using the BV7 management plan) to which
100 m3/s has been added to Lasalle discharge for each QM. This modified series
is still grouped among the Historic water supply class but with an out of group
probability of 0.4671 (instead of 0).

Figure 3 : PCoA graph showing the position of a new “TEST” time series (black dot) among
existing ones.

Since there was no such statistical pre-check counterpart in the previous version,
no processing time improvement can be observed here but we expect that time
wasted processing erroneous time series will be largely reduced.

It is noteworthy that this program depends on the presence of the R language and
environment in the execution environment and on the Python module rpy2, which
has to be installed in order to execute R functions from Python. Both the R
language and environment and the rpy2 Python module are cross-platform, open
source, well-maintained, and widely available software.

9

Improving results output

Spatial data output

Spatially-explicit model data output is important since maps can be used to
validate the correct execution of models or judge their behavior by observing
spatial shifts in time according to water level variations. Maps can be created for a
given combination of PI, time series, and year for which results are stored in the
database.

In order to build such maps in the Visual Basic.NET environment, it was necessary
to download data from the database through a GIS software for each combination
of PI, time series, and year. Depending on the GIS software used, this step can be
time-consuming since all specifications of PI, time series, year, file location, and
name might have to be manually input. In the new version, a Python program has
been created to automatically retrieve spatially-explicit results and create GIS files
from them. Users can also specify a suite of combinations and the new program
will create as many GIS files as requested. Specification regarding PI, time series,
and year are user-provided and results are automatically transferred in a GIS file
located in a PI-specific folder. This program requires the installation of the
GDAL/OGR executables in the programming environment. This software is freely-
available, cross-platform, and open-source. Output format is ‘ESRI shapefile’.

A significant improvement is also observed here considering the time saved not
having to create the GIS files manually.

Global results output

As seen earlier in this document, global results are now stored in a database table
instead of being retrieved from 14 raw data tables. In order to provide the IJC with
data comparing time series results, a Python 2.7 program was created to retrieve
global results from the database and transfer them to an Excel® spreadsheet
having the same format than the one in current usage to compare time series
results. Users simply provide a list of time series she or he wishes to compare.
This program requires the pandas package installation in the Python environment.

An important improvement is also observed here since this step eliminates time
used to retrieve data from the database and manually format the Excel®
spreadsheet.

Code isolation and structuration

Python has its own code modules (file containing code) importation system for
modules included in a defined Python project repository. In order to build a clear
repository structure, i.e., one compartmenting models and supporting programs
and respecting IERM project rationales, the IERM folder repository structure
underwent significant changes in order to adapt to Python importing system while
new classes and functions was being developed.

10

In order to respect the project logic, it has been decided to create a single main
folder called IERM2D with five specific sub-folders: the bin folder containing
project’s Python code; the cfg folder containing configuration files (one for each
model); the log folder containing execution logging files; the npz folder containing
the essential binary data files, and the results folder containing spatially-explicit
model results, inter-annual QM average discharge graphs, and global results files.

The bin folder contains a sub-folder for habitat models (ModeleHabitat) and
another one for supporting programs. The ModeleHabitat sub-folder contains the
parent class also named ModeleHabitat (described earlier) and 14 other sub-
folders containing model-specific code. The CodeUtilProjet sub-folder, located in
the bin folder is the repository for supporting programs. See Appendix 1 for more
details regarding the repository file and folder structure and contents.

As a consequence, code has been transferred, structured and isolated from the
IERM development environment. It is now free from dependencies and self-
contained in its own file and folder system. This situation allows models to be
easily transferred across platform, regardless of the OS (Microsoft® Windows®, or
Linux) as long as Python installation includes all necessary packages (matplotlib,
panda, r2py, etc.) and can access the necessary executables (R, OGR/GDAL).

11

Conclusion

All Lower St. Lawrence River habitat models (or environmental PIs) included in the
IERM environment hosted by the ECCC-HES have been migrated to the Python
2.7 programming language. Models’ object-oriented design has been improved
and encapsulates common functions and attributes into a parent class that each
specific model inherits.

Otherwise, many programs involved in the assessment of regulation plan through
habitats have also been recoded or created de novo into Python 2.7, namely
programs aiming at integrating water level time series in the IERM system, build
inter-annual QM average discharge graphs, compare a given time series to
existing ones, retrieve spatially-explicit model data from a database and transfer
them to GIS files, and select global results from a database and transfer them to
an Excel® spreadsheet.

Re-design, re-coding, creation of additional supporting programs and execution
coordination re-arrangement contributed to substantially improve the assessment
of new regulation plans by decreasing execution time and avoid spending time
manually handling data in the many steps involved from time series reception to
global results output. While the assessment of a new regulation plan analyzed
over 41-year worth of data took about 48 hours on a computer equipped with a 3.2
GHz processor and 16 GB RAM with the former Visual Basic.NET-implemented
IERM system, it now requires about six hours; an eight-fold improvement in
computation time.

Finally, the repository structure has also been re-designed to respect the IERM
project rationales and habitat model structure and to comply with the Python
importing system. Given that Python code is portable across OS such as Windows
or Linux, and that the IERM project is now self-contained in its own folder, it can
now be easily transferred and executed in a Linux environment like CMC’s
operational environment or environments that IJC partners might have access to
as long as a connection to a database is possible. The improvements described
here brought the IERM system to a nearly-automated, efficient, cross-platform,
and OS-independent state.

Next steps

The next step of the recoding project would be to give access to the IERM2D to a
larger audience. This would be possible by the IERM2D integration into a shared
environment or to develop a web-base access to the Python code and the
associated database. Both of these potential solutions have the benefit to give
access to the habitat models and supporting programs execution to other study
stakeholders thus promoting modelling through the IERM2D. Otherwise, these
solutions have two main drawbacks. First, as the implementation is presently
inside ECCC’s firewall, a new development implementation would have to be
created in an environment that all study stakeholders may have access to. Also,
given the size of the database in use at ECCC, the task to re-implement it is
achievable but would require a substantial amount of work. This database is
supported by a DataBase Management System (DBMS, Oracle®) and stores, only

12

for this project, nearly 2 terabytes of data mainly composed of the Digital Elevation
Model (DEM), the IERM2D grid, physical variables (hydrodynamic and wind
wave), time series, and habitat models results.

13

Appendix

Appendix 1 – Habitat models data comparison

Percentages of difference between habitat models processed with the former
VisualBasic.Net and the new Python 2.7 implementations. Habitat models are
summed over a 41-year period and the IERM Lower St. Lawrence River division.

Percentage difference

Ecosystem component PI name IERM Code HDD S1DD S2DD HBV710 S1BV710 S2BV710 HBV7985

Wetlands Water EAU < 0,00% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Wetlands Forest Forêt < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Wetlands Forested swamp MARBO < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Wetlands Shrubby swamp MARBU < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Wetlands Deep marsh MP < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Wetlands Shallow marsh MPP < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Wetlands Deep marsh influenced by wave MP_V < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Wetlands Prairie meadow PH < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Cattail Narrow leaf cattail Typha_A < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Cattail Broad-leaved cattail Typha_L < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Fish (reproduction) Northern pike ESLU < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Fish (reproduction) Yellow perch PEFL < 0,000% < 0,002% < 0,004% < 0,004% < 0,000% < 0,000% < 0,000%

Fish (feeding) Lake sturgeon ACFU < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Fish (feeding) Northern pike ESLU < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Fish (feeding) Brown bullhead ICNE < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Fish (feeding) Pumpkinseed LEGI < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Fish (feeding) Largemouth bass MISA < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Fish (feeding) Golden shiner NOCR < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Fish (feeding) Spottail shiner NOHU < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Fish (feeding) Yellow perch PEFL < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Fish (feeding) Sauger STCA < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Fish (feeding) Walleye STVI < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Muskrat Muskrat ONZI < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Submerged plants Narrowleaf water-plantain ALGR < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Submerged plants Common coontail CEDE < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Submerged plants Canadian pondweed ELCA < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Submerged plants Water Star Grass HEDU < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Submerged plants Eurasian w atermilfoil MYSP < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Submerged plants Sago pondweed POPE < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Submerged plants Richardson's pondw eed PORI < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Submerged plants Valisneria VAAM < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Submerged plants Submerged plants density Density < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Wetland birds American bittern BOLE < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Wetland birds Veery CAFU < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Wetland birds Black tern CHNI < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Wetland birds Marsh wren CIPA < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Wetland birds Common moorhen GACH < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Wetland birds Swamp sparrow MEGE < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Wetland birds Song sparrow MEME < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Wetland birds Sora POCA < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Wetland birds Pied-billed grebe POPO < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Wetland birds Virginia rail RALI < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Dabbling ducks Migration ANPL_MIG < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Dabbling ducks Elevage ANPL_ELEV < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Endangered species Least bittern IXEX < 0,004% <0,001 <0,001 < 0,004% < 0,000% < 0,000% < 0,004%

Endangered species Briddel shiner NOBI < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Endangered species Sand darter AMPE < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

Endangered species Map turtle GRGE < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000% < 0,000%

14

Appendix 2 – Repository structure description

Alphabetically-ordered list of all files and folders into which the IERM2D project is
defined and self-contained. For convenience, all .pyc (Python compiled) and
__init__.py (defining Python project folders) files are not shown.

Folder or file Content
IERM2D Main folder
│
├───bin All Python code
│ │
│ ├───CodeUtilProjet Supporting programs code
│ │ │
│ │ ├───AnalyseST Time series analysis and graphs
│ │ │ FlowTSPreCheck-Aux.R R code file containing PCoA functions
│ │ │ FlowTSPreCheck.py Compares a new time series
│ │ │ FlowTSPreCheck.rda Contains R functions for PCoA
│ │ │ graphST.py Time series graph tool
│ │ │ QSorelTS.cls Contains existing time series classes
│ │ │ QSorelTS.cnd Contains PCoA configuration data
│ │ │ QSorelTS.dat Contains existing time series
│ │ │ RPCoATS.py Embedded R code into a Python object
│ │ │ SerieTempoHQ.py Time series insertion and update

program │ │ │ TSTBC.dat Contains the new time series
│ │ │
│ │ ├───GlobalResults
│ │ │ makeGlobalResultsFile.py Global results output file program
│ │ │
│ │ ├───MetadonneesModeles
│ │ │ MetadonneesLOSLR.py Models metadata
│ │ │
│ │ └───Spatial
│ │ ResultsFromBD.py Spatially explicit data output program
│ │ tabPt2shp.py Text to GIS transformation tool
│ │
│ └───ModeleHabitat Habitat model main folder
│ │ mystruct.py Data structuring tool used by all

models │ │ startModele.py Starts sequencially all models
│ │ startModeleMH.py Starts the Wetland dependant models
│ │ startModeleTypha.py Starts the Cattail dependant models
│ │
│ ├───DB
│ │ DBUtil.py Database connection manager
│ │
│ ├───Declenche
│ │ declenche_v2.py Triggering data manager
│ │
│ │
│ │
│ ├───FHS
│ │ FHS_v2.py General binary file manager
│ │
│ ├───Grid
│ │ grid_v2.py IERM2D grid binary file manager
│ │
│ ├───MHPoolAmen

15

│ │ MHPoolAmen_v2.py Managed pool depth manager
│ │
│ ├───Modeles Folder grouping specific models
│ │ │ ModeleHabitat.py Mother class ModeleHabitat
│ │ │
│ │ ├───AMPE
│ │ │ AMPE.py Sand darter model
│ │ │
│ │ ├───Canards
│ │ │ Canards.py Waterfowl model
│ │ │
│ │ ├───DensiteSub
│ │ │ DensiteSub.py Submerged plants density model
│ │ │
│ │ ├───ESLU
│ │ │ ESLU.py Northern Pike model
│ │ │
│ │ ├───GRGE
│ │ │ GRGE.py Map Turtle model
│ │ │
│ │ ├───IXEX
│ │ │ IXEX.py Least bittern model
│ │ │
│ │ ├───MH
│ │ │ MH.py Wetland model
│ │ │
│ │ ├───NOBI
│ │ │ NOBI.py Bridle shiner model
│ │ │
│ │ ├───OiseauMH
│ │ │ OiseauMH.py Wetland birds model
│ │ │
│ │ ├───ONZI
│ │ │ ONZI.py Muskrat model
│ │ │
│ │ ├───PEFL
│ │ │ PEFL.py Yellow perch model
│ │ │
│ │ ├───PlanteSub
│ │ │ PlSub.py Submerged plants model
│ │ │
│ │ ├───PoissonEte
│ │ │ PoissonEte.py Fish feeding ground model
│ │ │
│ │ └───Typha
│ │ Typha.py Cattail model
│ │
│ ├───Profondeur
│ │ coteMob_v2.py Natural pools depth manager
│ │ poolAmen.py Managed pools depth manager
│ │ profQT.py QM water level calculator
│ │
│ ├───SerieTempo
│ │ serieTempo_v2.py Time series binary file manager
│ │
│ ├───Substrat
│ │ substrat.py Substrat data manager

16

│ │ talus.py Bank data manager
│ │
│ ├───utils
│ │ MQt.py QM transformation functions
│ │ MUtil.py Basic functions used by all models
│ │
│ ├───UtilSol
│ │ utilSol.py Land use data manager
│ │
│ └───VarPhys
│ varPhys_v2.py Physical variables binary file manager
│
├───cfg All configuration files (1 per model)
│ AMPE_2D.cfg
│ CanardBarboteur_2D.cfg
│ DENS_SUB_2D.cfg
│ ESLU_2D.cfg
│ GRGE_2D.cfg
│ IXEX_2D.cfg
│ MH_2D.cfg
│ NOBI_2D.cfg
│ OiseauMH_2D.cfg
│ ONZI_2D.cfg
│ PEFL_2D.cfg
│ PlSub_2D.cfg
│ POISSON_2D.cfg
│ Typha_2D.cfg
│
├───log Logging files (1 per model execution)
│ MH_HDD_1951_2000.log Logging example for wetland with HDD
│
├───npz Binary files
│ CoteMob_130513.npz Natural pools data file
│ CoteNat_280711.npz Managed pools data file
│ Grid_CMI3_20160414.npz IERM2D grid data file
│ MHPoolAmen_CMI3_20160414.npz Managed pools wetland types data file
│ ST_CMI3_HBV710_20160501.npz HBV710 series data file
│ ST_CMI3_HBV7985_20160501.npz HBV7985 series data file
│ ST_CMI3_HBV7_20160501.npz HBV7 series data file
│ ST_CMI3_HDD_20160501.npz HDD series data file
│ ST_CMI3_S1BV710_20160501.npz S1BV710 series data file
│ ST_CMI3_S1DD_20160501.npz S1DD series data file
│ ST_CMI3_S2BV710_20160501.npz S2BV710 series data file
│ ST_CMI3_S2DD_20160501.npz S2DD series data file
│ VarPhys_280513.npz Physical variables data file
│
└───results Results folder
 │ GlobalResults_20161006.xlsx Global results output file example
 │
 ├───AMPE Spatial Sand darter data
 │ AMPE_HDD_1972.dbf GIS files example showing Sand darter
 │ AMPE_HDD_1972.shp habitat distribution that would occur
 │ AMPE_HDD_1972.shx in 1972 using the HDD regulation plan
 │
 ├───Canards Spatial Waterfowl data
 │
 ├───Densite Spatial Submerged plant density data

17

 │
 ├───ESLU Spatial Northern pike data
 │
 ├───GRGE Spatial Map turtle data
 │
 ├───IXEX Spatial Least bittern data
 │
 ├───MH Spatial Wetland data
 │
 ├───NOBI Spatial Bridle shiner data
 │
 ├───OiseauMH Spatial Wetland birds data
 │
 ├───ONZI Spatial Muskrat data
 │
 ├───PEFL Spatial Yellow perch data
 │
 ├───PlSub Spatial Submerged plant data
 │
 ├───PoissonsEte Spatial Fish feeding ground data
 │
 ├───ST Time series graphs
 │ St_20161116.png Example of inter-annual QM graph
 │
 └───Typha Spatial Cattail data

